qrnegLogLikensumOR1 {bqror} | R Documentation |
Negative log-likelihood in the OR1 model
Description
This function computes the negative of log-likelihood for each individual and negative sum of log-likelihood in the OR1 model.
Usage
qrnegLogLikensumOR1(y, x, betaOne, deltaOne, p)
Arguments
y |
observed ordinal outcomes, column vector of size |
x |
covariate matrix of size |
betaOne |
a sample draw of |
deltaOne |
a sample draw of |
p |
quantile level or skewness parameter, p in (0,1). |
Details
This function computes the negative of log-likelihood for each individual and negative sum of log-likelihood in the OR1 model.
The latter when evaluated at postMeanbeta and postMeandelta is used to calculate the DIC and may also be utilized to calculate the Akaike information criterion (AIC) and the Bayesian information criterion (BIC).
Value
Returns a list with components
nlogl: |
vector of negative log-likelihood values. |
negsumlogl: |
negative sum of log-likelihood. |
References
Rahman, M. A. (2016). '"Bayesian Quantile Regression for Ordinal Models."' Bayesian Analysis, 11(1): 1-24. DOI: 10.1214/15-BA939
See Also
likelihood maximization
Examples
set.seed(101)
deltaOne <- c(-0.002570995, 1.044481071)
data("data25j4")
y <- data25j4$y
xMat <- data25j4$x
p <- 0.25
betaOne <- c(0.3990094, 0.8168991, 2.8034963)
output <- qrnegLogLikensumOR1(y, xMat, betaOne, deltaOne, p)
# nlogl
# 0.7424858
# 1.1649645
# 2.1344390
# 0.9881085
# 2.7677386
# 0.8229129
# 0.8854911
# 0.3534490
# 1.8582422
# 0.9508680 .. soon
# negsumlogl
# 663.5475