qrminfundtheorem {bqror} | R Documentation |
Minimizes the negative of log-likelihood in the OR1 model
Description
This function minimizes the negative of log-likelihood in the OR1 model
with respect to the cut-points \delta
using the
fundamental theorem of calculus.
Usage
qrminfundtheorem(deltaIn, y, x, beta, cri0, cri1, stepsize, maxiter, h, dh, sw, p)
Arguments
deltaIn |
initialization of cut-points. |
y |
observed ordinal outcomes, column vector of size |
x |
covariate matrix of size |
beta |
|
cri0 |
initial criterion, |
cri1 |
criterion lies between (0.001 to 0.0001). |
stepsize |
learning rate lies between (0.1, 1). |
maxiter |
maximum number of iteration. |
h |
change in each value of |
dh |
change in each value of |
sw |
iteration to switch from BHHH to inv(-H) algorithm. |
p |
quantile level or skewness parameter, p in (0,1). |
Details
First derivative from first principle
dy/dx=[f(x+h)-f(x-h)]/2h
Second derivative from first principle
f'(x-h)=(f(x)-f(x-h))/h
f''(x)= [{(f(x+h)-f(x))/h} - (f(x)-f(x-h))/h]/h
= [(f(x+h)+f(x-h)-2 f(x))]/h^2
cross partial derivatives
f(x) = [f(x+dh,y)-f(x-dh,y)]/2dh
f(x,y)=[{(f(x+dh,y+dh) - f(x+dh,y-dh))/2dh} - {(f(x-dh,y+dh) -
f(x-dh,y-dh))/2dh}]/2dh
= 0.25* [{(f(x+dh,y+dh)-f(x+dh,y-dh))} -{(f(x-dh,y+dh)-f(x-dh,y-dh))}]/dh2
Value
Returns a list with components
deltamin: |
cutpoint vector that minimizes the log-likelihood function. |
negsum: |
negative sum of log-likelihood. |
logl: |
log-likelihood values. |
G: |
gradient vector, |
H: |
Hessian matrix. |
See Also
differential calculus, functional maximization, mldivide
Examples
set.seed(101)
deltaIn <- c(-0.002570995, 1.044481071)
data("data25j4")
y <- data25j4$y
xMat <- data25j4$x
p <- 0.25
beta <- c(0.3990094, 0.8168991, 2.8034963)
cri0 <- 1
cri1 <- 0.001
stepsize <- 1
maxiter <- 10
h <- 0.002
dh <- 0.0002
sw <- 20
output <- qrminfundtheorem(deltaIn, y, xMat, beta, cri0, cri1, stepsize, maxiter, h, dh, sw, p)
# deltamin
# 0.8266967 0.3635708
# negsum
# 645.4911
# logl
# -0.7136999
# -1.5340787
# -1.1072447
# -1.4423124
# -1.3944677
# -0.7941271
# -1.6544072
# -0.3246632
# -1.8582422
# -0.9220822
# -2.1117739 .. soon
# G
# 0.803892784 0.00000000
# -0.420190546 0.72908381
# -0.421776117 0.72908341
# -0.421776117 -0.60184063
# -0.421776117 -0.60184063
# 0.151489598 0.86175120
# 0.296995920 0.96329114
# -0.421776117 0.72908341
# -0.340103190 -0.48530164
# 0.000000000 0.00000000
# -0.421776117 -0.60184063.. soon
# H
# -338.21243 -41.10775
# -41.10775 -106.32758