| NormalNormalPosterior {bpp} | R Documentation | 
Normal-Normal Posterior in conjugate normal model, for known sigma
Description
Compute the posterior distribution in a conjugate normal model for known variance: Let X_1, \ldots, X_n be a sample from a N(\mu, \sigma^2) distribution, with \sigma assumed known. We assume a prior distribution on \mu, namely N(\nu, \tau^2). The posterior distribution is then \mu|x \sim N(\mu_p, \sigma_p^2) with
\mu_p = (1 / (\sigma^2 / n) + \tau^{-2})^{-1}  (\bar{x} / (\sigma^2/n) + \nu / \tau^2)
and
\sigma_p = (1 / (\sigma^2/n) + \tau^{-2})^{-1}.
These formulas are available e.g. in Held (2014, p. 182).
Usage
NormalNormalPosterior(datamean, sigma, n, nu, tau)Arguments
| datamean | Mean of the data. | 
| sigma | (Known) standard deviation of the data. | 
| n | Number of observations. | 
| nu | Prior mean. | 
| tau | Prior standard deviation. | 
Value
A list with the entries:
| postmean | Posterior mean. | 
| postsigma | Posterior standard deviation. | 
Author(s)
Kaspar Rufibach (maintainer) 
 kaspar.rufibach@roche.com
References
Held, L., Sabanes-Bove, D. (2014). Applied Statistical Inference. Springer.
Examples
## data:
n <- 25
sd0 <- 3
x <- rnorm(n, mean = 2, sd = sd0)
## prior:
nu <- 0
tau <- 2
## posterior:
NormalNormalPosterior(datamean = mean(x), sigma = sd0, 
                      n = n, nu = nu, tau = tau)