var.rdf {bpca} | R Documentation |
Diagnostic of Projected Correlations
Description
Computes the diagnostic of poor graphical correlations projected by biplot according to an arbitrary ‘limit’.
Usage
var.rdf(x,
var.rb,
limit)
Arguments
x |
A given object of the classe |
var.rb |
A given object of the class |
limit |
A vector giving the percentual limit to define poor representation of variables. |
Value
A data.frame
of poor graphical correlations projected by biplot.
Note
This function is mainly for internal use in the bpca package, and may not remain available (unless we see a good reason).
Author(s)
Faria, J. C.
Allaman, I. B.
Demétrio C. G. B.
See Also
bpca
.
Examples
##
## Example 1
## Diagnostic of gabriel1971 dataset representation
##
oask <- devAskNewPage(dev.interactive(orNone=TRUE))
bp1 <- bpca(gabriel1971,
meth='hj',
var.rb=TRUE)
(res <- var.rdf(gabriel1971,
bp1$var.rb,
lim=3))
class(res)
##
## Example 2
## Diagnostic of gabriel1971 dataset representation with var.rd parameter
##
bp2 <- bpca(gabriel1971,
meth='hj',
var.rb=TRUE,
var.rd=TRUE,
limit=3)
plot(bp2,
var.factor=2)
bp2$var.rd
bp2$eigenvectors
# Graphical visualization of the importance of the variables not contemplated
# in the reduction
plot(bpca(gabriel1971,
meth='hj',
d=3:4),
main='hj',
xlim=c(-1,1),
ylim=c(-1,1))
# Interpretation:
# RUR followed by CRISTIAN contains information dimensions that
# wasn't contemplated by the biplot reduction (PC3).
# Between all, RUR followed by CRISTIAN, variables are the most poor represented
# by a 2d biplot.
## Not run:
##
## Example 3
## Diagnostic of iris dataset representation with var.rd parameter
##
bp3 <- bpca(iris[-5],
var.rb=TRUE,
var.rd=TRUE,
limit=3)
plot(bp3,
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
var.factor=.3)
bp3$var.rd
bp3$eigenvectors
# Graphical diagnostic
plot(bpca(iris[-5],
d=3:4),
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
obj.names=FALSE,
var.factor=.6,
xlim=c(-2,3),
ylim=c(-1,1))
# Interpretation:
# Sepal.length followed by Petal.Width contains information in dimensions
# (PC3 - the PC3 is, essentially, a contrast among both) that wasn't fully
# contemplated by the biplot reduction (PC1 and PC2) .
# Therefore, between all variables, they have the most poor representation by a
# 2d biplot.
bp4 <- bpca(iris[-5],
d=1:3,
var.rb=TRUE,
var.rd=TRUE,
limit=2)
plot(bp4,
obj.names=FALSE,
obj.pch=c('+', '-', '*')[unclass(iris$Species)],
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
obj.cex=1,
xlim=c(-5,5),
ylim=c(-5,5),
zlim=c(-5,5),
var.factor=.5)
bp4$var.rd
bp4$eigenvectors
round(bp3$var.rb, 2)
round(cor(iris[-5]), 2)
# Good representation of all variables with a 3d biplot!
## End(Not run)
devAskNewPage(oask)
[Package bpca version 1.3-6 Index]