bpca-package {bpca} | R Documentation |
Biplot of Multivariate Data Based on Principal Components Analysis
Description
Implements biplot (2d and 3d) and diagnostic tools of the quality of the reduction.
Author(s)
Faria, J. C.
Allaman, I. B.
Demétrio C. G. B.
References
Gabriel, K. R. (1971) The biplot graphical display of matrices with application to principal component analysis. Biometrika 58, 453-467.
Galindo Vilardón, M. P. (1986) Una alternativa de representación simultánea: HJ-Biplot. Qüestiió, 10(1):13-23, 1986.
Johnson, R. A. and Wichern, D. W. (1988) Applied multivariate statistical analysis. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 6 ed.
Gower, J.C. and Hand, D. J. (1996) Biplots. Chapman & Hall.
Yan, B. W. and Kang, M. S. (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, New York, 288p.
Examples
##
## Grouping objects with different symbols and colors - 2d and 3d
##
dev.new(w=6, h=6)
oask <- devAskNewPage(dev.interactive(orNone=TRUE))
## Not run:
# 2d
plot(bpca(iris[-5]),
var.factor=.3,
var.cex=.7,
obj.names=FALSE,
obj.cex=1.5,
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
obj.pch=c('+', '*', '-')[unclass(iris$Species)])
# 3d static
plot(bpca(iris[-5],
d=1:3),
var.factor=.2,
var.color=c('blue', 'red'),
var.cex=1,
obj.names=FALSE,
obj.cex=1,
obj.col=c('red', 'green3', 'blue')[unclass(iris$Species)],
obj.pch=c('+', '*', '-')[unclass(iris$Species)])
# 3d dynamic
plot(bpca(iris[-5],
method='hj',
d=1:3),
rgl.use=TRUE,
var.col='brown',
var.factor=.3,
var.cex=1.2,
obj.names=FALSE,
obj.cex=.8,
obj.col=c('red', 'green3', 'orange')[unclass(iris$Species)],
simple.axes=FALSE,
box=TRUE)
## End(Not run)
##
## New options plotting
##
plot(bpca(ontario))
# Labels for all objects
(obj.lab <- paste('g',
1:18,
sep=''))
# Giving obj.labels
plot(bpca(ontario),
obj.labels=obj.lab)
# Evaluate an object (1 is the default)
plot(bpca(ontario),
type='eo',
obj.cex=1)
plot(bpca(ontario),
type='eo',
obj.id=7,
obj.cex=1)
# Giving obj.labels
plot(bpca(ontario),
type='eo',
obj.labels=obj.lab,
obj.id=7,
obj.cex=1)
# The same as above
plot(bpca(ontario),
type='eo',
obj.labels=obj.lab,
obj.id='g7',
obj.cex=1)
# Evaluate a variable (1 is the default)
plot(bpca(ontario),
type='ev',
var.pos=2,
var.cex=1)
plot(bpca(ontario),
type='ev',
var.id='E7',
obj.labels=obj.lab,
var.pos=1,
var.cex=1)
# A complete plot
cl <- 1:3
plot(bpca(iris[-5]),
type='ev',
var.id=1,
var.fac=.3,
obj.names=FALSE,
obj.col=cl[unclass(iris$Species)])
legend('topleft',
legend=levels(iris$Species),
text.col=cl,
pch=19,
col=cl,
cex=.9,
box.lty=0)
# Compare two objects (1 and 2 are the default)
plot(bpca(ontario),
type='co')
plot(bpca(ontario),
type='co',
obj.labels=obj.lab)
plot(bpca(ontario),
type='co',
obj.labels=obj.lab,
obj.id=13:14)
plot(bpca(ontario),
type='co',
obj.labels=obj.lab,
obj.id=c('g7', 'g13'))
# Compare two variables
plot(bpca(ontario),
type='cv')
# Which won where/what
plot(bpca(ontario),
type='ww')
# Discrimitiveness vs. representativeness
plot(bpca(ontario),
type='dv')
# Means vs. stability
plot(bpca(ontario),
type='ms')
# Rank objects with ref. to the ideal variable
plot(bpca(ontario),
type='ro')
# Rank variables with ref. to the ideal object
plot(bpca(ontario),
type='rv')
## Not run:
plot(bpca(iris[-5]),
type='eo',
obj.id=42,
obj.cex=1)
plot(bpca(iris[-5]),
type='ev',
var.id='Sepal.Width')
plot(bpca(iris[-5]),
type='ev',
var.id='Sepal.Width',
var.factor=.3)
## End(Not run)
devAskNewPage(oask)
[Package bpca version 1.3-6 Index]