pseudopop.boot.stsrs {bootsurv} | R Documentation |
Pseudo-population Bootstrap Methods for Survey Data
Description
The function pseudopop.boot.stsrs
applies one of the following pseudo-population bootstrap methods on complete (full response) survey data selected under either SRSWOR or STSRSWOR: Bickel and Freedman (1984), Chao and Lo (1985), Sitter (1992, CJS), Booth, Butler and Hall (1994) and Chao and Lo (1994).
Usage
pseudopop.boot.stsrs(
data,
population.size,
R.pop,
R.samp,
parameter = "total",
bootstrap.method = "Booth.Butler.Hall"
)
Arguments
data |
A vector, matrix or data frame. If it is a matrix or data frame then the column of study variable has to be named |
population.size |
A vector of stratum population sizes |
R.pop |
The number of bootstrap replicates to create bootstrap pseudo-populations |
R.samp |
The number of bootstrap replicates to draw bootstrap samples from each bootstrap pseudo-population |
parameter |
One of the following population parameters can be applied: |
bootstrap.method |
One of the following bootstrap methods can be applied: |
Value
boot.statistic
A vector of bootstrap statistics
boot.parameter
A vector of bootstrap parameters computed on bootstrap pseudo-populations
boot.var
The bootstrap variance estimator of the estimator of parameter of interest
boot.mean
The average of the bootstrap estimator of the parameter of interest
boot.sample
A list of size R.pop
. Each list contains a list of results on each generated bootstrap pseudo-population. This includes three columns: bootstrap values, selected indices in each stratum, and a stratum identifier column.
References
Bickel, P. J. and Freedman, D. A. (1984). Asymptotic normality and the bootstrap in stratified sampling. The Annals of Statistics 12, 470–82.
Booth, J. G., Butler, R. W. and Hall, P. (1994). Bootstrap methods for finite populations. Journal of the American Statistical Association 89 (428), 1282–1289.
Chao, M. T. and Lo, S.-H. (1985). A bootstrap method for finite population. Sankhya: The Indian Journal of Statistics, Series A 47, 399–405.
Chao, M. T. and Lo, S.-H. (1994). Maximum likelihood summary and the bootstrap method in structured finite populations. Statistica Sinica 4 (2), 389–406.
Särndal, C.-E., Swensson, B. and Wretman, J. (1992). Model-Assisted Survey Sampling. NewYork: Springer.
Sitter, R. R. (1992). Comparing three bootstrap methods for survey data. The Canadian Journal of Statistics 20 (2), 135–154.
Examples
R.pop<- 5
R.samp<- 10
data(data_samp_srs)
population_size<- 6000
# The sampling fraction is about 30%.
# data_samp_srs is a sample taken from data_pop available in the package.
boot.Booth<- pseudopop.boot.stsrs(data_samp_srs, population_size, R.pop, R.samp)
boot.Booth$boot.var
boot.BF<- pseudopop.boot.stsrs(data_samp_srs, population_size, R.pop, R.samp,
bootstrap.method="Bickel.Freedman")
boot.BF$boot.var
boot.Sitter.med<- pseudopop.boot.stsrs(data_samp_srs, population_size, R.pop,
R.samp, parameter="median", bootstrap.method="Sitter.BWO")
boot.Sitter.med$boot.var
boot.Sitter.med$boot.sample[[2]][[5]]
data(data_samp_stsrs)
population_size_st<- c(4500, 6300, 3500, 2000, 1500)
# The overall sampling fraction is about 30%.
# data_samp_stsrs is a sample taken from data_pop_st available in the package.
boot.Booth.st<- pseudopop.boot.stsrs(data_samp_stsrs, population_size_st, R.pop, R.samp)
boot.Booth.st$boot.statistic