boott {bootstrap} | R Documentation |
Bootstrap-t Confidence Limits
Description
See Efron and Tibshirani (1993) for details on this function.
Usage
boott(x,theta, ..., sdfun=sdfunboot, nbootsd=25, nboott=200,
VS=FALSE, v.nbootg=100, v.nbootsd=25, v.nboott=200,
perc=c(.001,.01,.025,.05,.10,.50,.90,.95,.975,.99,.999))
Arguments
x |
a vector containing the data. Nonparametric bootstrap sampling is used. To bootstrap from more complex data structures (e.g. bivariate data) see the last example below. |
theta |
function to be bootstrapped. Takes |
... |
any additional arguments to be passed to |
sdfun |
optional name of function for computing standard
deviation of |
nbootsd |
The number of bootstrap samples used to estimate the
standard deviation of |
nboott |
The number of bootstrap samples used to estimate the
distribution of the bootstrap T statistic.
200 is a bare minimum and 1000 or more is needed for
reliable |
VS |
If |
v.nbootg |
The number of bootstrap samples used to estimate the
variance stabilizing transformation g.
Only used if |
v.nbootsd |
The number of bootstrap samples used to estimate the
standard deviation of |
v.nboott |
The number of bootstrap samples used to estimate the
distribution of
the bootstrap T statistic. Only used if |
perc |
Confidence points desired. |
Value
list with the following components:
confpoints |
Estimated confidence points |
theta , g |
|
call |
The deparsed call |
References
Tibshirani, R. (1988) "Variance stabilization and the bootstrap". Biometrika (1988) vol 75 no 3 pages 433-44.
Hall, P. (1988) Theoretical comparison of bootstrap confidence intervals. Ann. Statisi. 16, 1-50.
Efron, B. and Tibshirani, R. (1993) An Introduction to the Bootstrap. Chapman and Hall, New York, London.
Examples
# estimated confidence points for the mean
x <- rchisq(20,1)
theta <- function(x){mean(x)}
results <- boott(x,theta)
# estimated confidence points for the mean,
# using variance-stabilization bootstrap-T method
results <- boott(x,theta,VS=TRUE)
results$confpoints # gives confidence points
# plot the estimated var stabilizing transformation
plot(results$theta,results$g)
# use standard formula for stand dev of mean
# rather than an inner bootstrap loop
sdmean <- function(x, ...)
{sqrt(var(x)/length(x))}
results <- boott(x,theta,sdfun=sdmean)
# To bootstrap functions of more complex data structures,
# write theta so that its argument x
# is the set of observation numbers
# and simply pass as data to boot the vector 1,2,..n.
# For example, to bootstrap
# the correlation coefficient from a set of 15 data pairs:
xdata <- matrix(rnorm(30),ncol=2)
n <- 15
theta <- function(x, xdata){ cor(xdata[x,1],xdata[x,2]) }
results <- boott(1:n,theta, xdata)