bootImputeAnalyse {bootImpute} | R Documentation |
Analyse bootstrapped and imputed estimates
Description
Applies the user specified analysis function to each imputed dataset contained
in imps
, then calculates estimates, confidence intervals and p-values
for each parameter, as proposed by von Hippel and Bartlett (2021).
Usage
bootImputeAnalyse(imps, analysisfun, nCores = 1, quiet = FALSE, ...)
Arguments
imps |
The list of imputed datasets returned by |
analysisfun |
A function which when applied to a single dataset returns
the estimate of the parameter(s) of interest. The dataset to be analysed
is passed to |
nCores |
The number of CPU cores to use. If specified greater than one,
|
quiet |
Specify whether to print a table of estimates, confidence intervals and p-values. |
... |
Other parameters that are to be passed through to |
Details
Multiple cores can be used by using the nCores
argument, which may be
useful for reducing computation times.
Value
A vector containing the point estimate(s), variance estimates, and degrees of freedom.
References
von Hippel PT, Bartlett JW. Maximum likelihood multiple imputation: faster, more efficient imputation without posterior draws. Statistical Science, 2021, 36(3):400-420. doi:10.1214/20-STS793
Examples
library(mice)
set.seed(564764)
#bootstrap twice and impute each twice
#in practice you should bootstrap many more times, e.g. at least 200
imps <- bootMice(ex_linquad, nBoot=2, nImp=2)
#analyse estimates
#write a wapper to analyse an imputed dataset
analyseImp <- function(inputData) {
coef(lm(y~z+x+xsq,data=inputData))
}
ests <- bootImputeAnalyse(imps, analyseImp)