sim_vecm_ardl {bootCT}R Documentation

Generate data from a VECM/ARDL equation

Description

Generate data from a VECM/ARDL equation

Usage

sim_vecm_ardl(
  nobs,
  case = 1,
  sigma.in,
  gamma.in,
  axx.in,
  ayx.uc.in,
  ayy.in,
  mu.in = NULL,
  eta.in = NULL,
  azero.in = NULL,
  aone.in = NULL,
  burn.in = nobs * 0.5,
  seed.in = NULL
)

Arguments

nobs

number of observations.

case

case related to intercept and trend

sigma.in

error covariance matrix \boldsymbol\Sigma

gamma.in

list of VECM short-run parameter matrices \boldsymbol\Gamma_j

axx.in

long-run relationships between the independent variables \mathbf A_{xx}

ayx.uc.in

long-run unconditional relationship between dependent and independent variables, \mathbf a_{yx}. The second component ayxC, derived from conditioning, is calculated as \mathbf a_{yx}^{(C)}= - \boldsymbol\omega'\mathbf A_{xx}

ayy.in

long-run relationship for the dependent variable a_{yy}

mu.in

VAR intercept vector \boldsymbol\mu (CASE II)

eta.in

VAR trend vector \boldsymbol\eta (CASE IV)

azero.in

VECM intercept \boldsymbol{\alpha}_{0} (CASE III-IV-V)

aone.in

VECM trend \boldsymbol{\alpha}_{1} (CASE V)

burn.in

burn-in number of observations

seed.in

optional seed number for random error generation.

Value

A list that includes

Examples

#PARAMETERS

#Sigma
corrm = matrix(0, ncol = 3, nrow = 3)
corrm[2,1] = 0.25
corrm[3,1] = 0.4
corrm[3,2] = -0.25
corrs = (corrm + t(corrm)) + diag(3)
sds = diag(c(1.3, 1.2, 1))
sigma = (sds %*% corrs %*% t(sds))

#Gamma
gammax = list()
gammax[[1]] = matrix(c(0.6, 0, 0.2, 0.1, -0.3, 0, 0, -0.3, 0.2), nrow = 3, ncol = 3, byrow = TRUE)
gammax[[2]] = matrix(c(0.2, 0, 0.1, 0.05, -0.15, 0, 0, 0, 0.1), nrow = 3, ncol = 3, byrow = TRUE)

#DATA GENERATION
data_sim = sim_vecm_ardl(nobs = 200,
                         case = 3,
                         sigma.in = sigma,
                         gamma.in = gammax,
                         axx.in = matrix(c(0.3, 0.5, 0.4, 0.3), nrow = 2, ncol = 2),
                         ayx.uc.in = c(0.5,0.6),
                         ayy.in = 0.7,
                         mu.in = rep(0, 3),
                         eta.in = rep(0, 3),
                         azero.in = rep(0.4, 3),
                         aone.in = rep(0, 3),
                         burn.in = 50,
                         seed.in = 10)


[Package bootCT version 2.1.0 Index]