vimp.boostmtree {boostmtree} | R Documentation |
Variable Importance
Description
Calculate VIMP score for each of the individual covariates or a joint VIMP of multiple covariates.
Usage
vimp.boostmtree(object,
x.names = NULL,
joint = FALSE)
Arguments
object |
A boosting object of class |
x.names |
Names of the x-variables for which VIMP is requested. If NULL, VIMP is calcuated for all the covariates |
joint |
Estimate individual VIMP for each covariate from |
Details
Variable Importance (VIMP) is calcuated for each of the covariates individually or a joint
VIMP is calulated for all the covariates specfied in x.names
.
Author(s)
Hemant Ishwaran, Amol Pande and Udaya B. Kogalur
References
Friedman J.H. Greedy function approximation: a gradient boosting machine, Ann. of Statist., 5:1189-1232, 2001.
Examples
## Not run:
##------------------------------------------------------------
## Synthetic example (Response is continuous)
## VIMP is based on in-sample CV using out of bag data
##-------------------------------------------------------------
#simulate the data
dta <- simLong(n = 50, N = 5, rho =.80, model = 2,family = "Continuous")$dtaL
#basic boosting call
boost.grow <- boostmtree(dta$features, dta$time, dta$id, dta$y,
family = "Continuous", M = 300,cv.flag = TRUE)
vimp.grow <- vimp.boostmtree(object = boost.grow,x.names=c("x1","x2"),joint = FALSE)
vimp.joint.grow <- vimp.boostmtree(object = boost.grow,x.names=c("x1","x2"),joint = TRUE)
##------------------------------------------------------------
## Synthetic example (Response is continuous)
## VIMP is based on test data
##-------------------------------------------------------------
#simulate the data
dtaO <- simLong(n = 100, ntest = 100, N = 5, rho =.80, model = 2, family = "Continuous")
## save the data as both a list and data frame
dtaL <- dtaO$dtaL
dta <- dtaO$dta
## get the training data
trn <- dtaO$trn
#basic boosting call
boost.grow <- boostmtree(dtaL$features[trn,], dtaL$time[trn], dtaL$id[trn], dtaL$y[trn],
family = "Continuous", M = 300)
boost.pred <- predict(boost.grow,dtaL$features[-trn,], dtaL$time[-trn], dtaL$id[-trn],
dtaL$y[-trn])
vimp.pred <- vimp.boostmtree(object = boost.pred,x.names=c("x1","x2"),joint = FALSE)
vimp.joint.pred <- vimp.boostmtree(object = boost.pred,x.names=c("x1","x2"),joint = TRUE)
## End(Not run)
[Package boostmtree version 1.5.1 Index]