NormalInverseGaussian {boodist} | R Documentation |
Normal-inverse Gaussian distribution
Description
A R6 class to represent a normal-inverse Gaussian distribution.
Details
See Wikipedia.
Active bindings
mu
Get or set the value of
mu
.alpha
Get or set the value of
alpha
.beta
Get or set the value of
beta
.delta
Get or set the value of
delta
.
Methods
Public methods
Method new()
New normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$new(mu, alpha, beta, delta)
Arguments
mu
location parameter
alpha
tail heaviness parameter,
>0
beta
asymmetry parameter
delta
scale parameter,
>0
Returns
A NormalInverseGaussian
object.
Method d()
Density function of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$d(x, log = FALSE)
Arguments
x
numeric vector
log
Boolean, whether to return the logarithm of the density
Returns
The density or the log-density evaluated at x
.
Method p()
Cumulative distribution function of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$p(q)
Arguments
q
numeric vector of quantiles
Returns
The cumulative probabilities corresponding to q
, with two
attributes (see the Note).
Method q()
Quantile function of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$q(p, bounds = NULL)
Arguments
p
numeric vector of probabilities
bounds
bounds enclosing the quantiles to be found (see the Note), or
NULL
for automatic bounds
Returns
The quantiles corresponding to p
.
Method r()
Sampling from the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$r(n)
Arguments
n
number of simulations
Returns
A numeric vector of length n
.
Method mean()
Mean of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$mean()
Returns
The mean of the normal-inverse Gaussian distribution.
Method sd()
Standard deviation of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$sd()
Returns
The standard deviation of the normal-inverse Gaussian distribution.
Method variance()
Variance of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$variance()
Returns
The variance of the normal-inverse Gaussian distribution.
Method skewness()
Skewness of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$skewness()
Returns
The skewness of the normal-inverse Gaussian distribution.
Method kurtosis()
Kurtosis of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$kurtosis()
Returns
The kurtosis of the normal-inverse Gaussian distribution.
Method kurtosisExcess()
Kurtosis excess of the normal-inverse Gaussian distribution.
Usage
NormalInverseGaussian$kurtosisExcess()
Returns
The kurtosis excess of the normal-inverse Gaussian distribution.
Method clone()
The objects of this class are cloneable with this method.
Usage
NormalInverseGaussian$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Note
The cumulative distribution function is evaluated by integrating the
density function (in C++). Its returned value has two attributes: a
numeric vector "error_estimate"
and an integer vector
"error_code"
. The error code is 0 if no problem is detected. If an
error code is not 0, a warning is thrown. The quantile function is
evaluated by root-finding and then the user must provide some bounds
enclosing the values of the quantiles or choose the automatic bounds.
A maximum number of iterations is fixed in the root-finding algorithm.
If it is reached, a warning is thrown.