influential_obs {bnmonitor} | R Documentation |
Influential observations
Description
Influence of a single observation to the global monitor
Usage
influential_obs(dag, data, alpha = "default")
Arguments
dag |
an object of class |
data |
a base R style dataframe |
alpha |
single integer. By default, the number of max levels in |
Details
Consider a Bayesian network over variables Y_1,\dots,Y_m
and suppose a dataset (\boldsymbol{y}_1,\dots,\boldsymbol{y}_n)
has been observed, where \boldsymbol{y}_i=(y_{i1},\dots,y_{im})
and y_{ij}
is the i-th observation of the j-th variable. Define \boldsymbol{y}_{-i}=(\boldsymbol{y}_1,\dots,\boldsymbol{y}_{i-1},\boldsymbol{y}_{i+1},\dots,\boldsymbol{y}_n)
.
The influence of an observation to the global monitor is defined as
|\log(p(\boldsymbol{y}_1,\dots,\boldsymbol{y}_n)) - \log(p(\boldsymbol{y}_{-i}))|.
High values of this index denote observations that highly contribute to the likelihood of the model.
Value
A vector including the influence of each observation.
See Also
influential_obs
, node_monitor
, seq_node_monitor
, seq_pa_ch_monitor
Examples
influential_obs(chds_bn, chds[1:100,], 3)