information theoretic quantities {bnlearn} | R Documentation |
Compute the distance between two fitted Bayesian networks
Description
Compute Shannon's entropy of a fitted Bayesian network and the Kullback-Leibler divergence between two fitted Bayesian networks.
Usage
H(P)
KL(P, Q)
Arguments
P , Q |
objects of class |
Value
H()
and KL()
return a single numeric value.
Note
Note that in the case of Gaussian and conditional Gaussian netwoks the divergence can be negative. Regardless of the type of network, if at least one of the two networks is singular the divergence can be infinite.
If any of the parameters of the two networks are NA
s, the divergence
will also be NA
.
Author(s)
Marco Scutari
Examples
## Not run:
# discrete networks
dag = model2network("[A][C][F][B|A][D|A:C][E|B:F]")
fitted1 = bn.fit(dag, learning.test, method = "mle")
fitted2 = bn.fit(dag, learning.test, method = "bayes", iss = 20)
H(fitted1)
H(fitted2)
KL(fitted1, fitted1)
KL(fitted2, fitted2)
KL(fitted1, fitted2)
## End(Not run)
# continuous, singular networks.
dag = model2network("[A][B][E][G][C|A:B][D|B][F|A:D:E:G]")
singular = fitted1 = bn.fit(dag, gaussian.test)
singular$A = list(coef = coef(fitted1[["A"]]) + runif(1), sd = 0)
H(singular)
H(fitted1)
KL(singular, fitted1)
KL(fitted1, singular)
[Package bnlearn version 5.0 Index]