constraint-based algorithms {bnlearn}R Documentation

Constraint-based structure learning algorithms

Description

Learn the equivalence class of a directed acyclic graph (DAG) from data using the PC, Grow-Shrink (GS), Incremental Association (IAMB), Fast Incremental Association (Fast-IAMB), Interleaved Incremental Association (Inter-IAMB), Incremental Association with FDR (IAMB-FDR), Max-Min Parents and Children (MMPC), Semi-Interleaved HITON-PC or Hybrid Parents and Children (HPC) constraint-based algorithms.

Usage

pc.stable(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = FALSE)
gs(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = FALSE)
iamb(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = FALSE)
fast.iamb(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = FALSE)
inter.iamb(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = FALSE)
iamb.fdr(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = FALSE)
mmpc(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = TRUE)
si.hiton.pc(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = TRUE)
hpc(x, cluster, whitelist = NULL, blacklist = NULL, test = NULL,
  alpha = 0.05, ..., max.sx = NULL, debug = FALSE, undirected = TRUE)

Arguments

x

a data frame containing the variables in the model.

cluster

an optional cluster object from package parallel.

whitelist

a data frame with two columns (optionally labeled "from" and "to"), containing a set of arcs to be included in the graph.

blacklist

a data frame with two columns (optionally labeled "from" and "to"), containing a set of arcs not to be included in the graph.

test

a character string, the label of the conditional independence test to be used in the algorithm. If none is specified, the default test statistic is the mutual information for categorical variables, the Jonckheere-Terpstra test for ordered factors and the linear correlation for continuous variables. See independence tests for details.

alpha

a numeric value, the target nominal type I error rate.

...

optional arguments to be passed to the test specified by test. See ci.test for details.

max.sx

a positive integer, the maximum allowed size of the conditioning sets used in conditional independence tests. The default is that there is no limit on size.

debug

a boolean value. If TRUE a lot of debugging output is printed; otherwise the function is completely silent.

undirected

a boolean value. If TRUE no attempt will be made to determine the orientation of the arcs; the returned (undirected) graph will represent the underlying structure of the Bayesian network.

Value

An object of class bn. See bn-class for details.

Note

Note that even when undirected is set to FALSE there is no guarantee that all arcs in the returned network will be directed; some arc directions are impossible to learn just from data due to score equivalence. cextend() provides a consistent extension of partially directed networks into directed acyclic graphs, which can then be used (for instance) for parameter learning.

See structure learning for a complete list of structure learning algorithms with the respective references. All algorithms accept incomplete data, which they handle by computing individual conditional independence tests on locally complete observations.

Author(s)

Marco Scutari

See Also

independence tests, local discovery algorithms, score-based algorithms, hybrid algorithms, cextend.


[Package bnlearn version 5.0 Index]