plot.BMSC {bmscstan} | R Documentation |
Plot estimates from a BMSC
object.
Description
Plot estimates from a BMSC
object.
Usage
## S3 method for class 'BMSC'
plot(x, who = "both", type = "interval", CI = 0.95, ...)
Arguments
x |
An object of class BMSC. |
who |
parameter to choose the estimates to plot
|
type |
a parameter to select the typology of graph
|
CI |
the dimension of the Credible Interval (or Equally Tailed Interval). Default 0.95. |
... |
other arguments are ignored. |
Value
a plot, a ggplot2 object, or a bayesplot object
Examples
# simulation of healthy controls data
Sigma.ctrl <- matrix(cbind(1, .7, .7, 1) ,nrow=2)
U <- t(chol(Sigma.ctrl))
numobs <- 100
set.seed(123)
random.normal <- matrix( rnorm( n = ncol(U) * numobs, mean = 3, sd = 1),
nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.ctrl <- as.data.frame(t(X))
names(dat.ctrl) <- c("y","x")
cor(dat.ctrl)
# simulation of patient data
Sigma.pt <- matrix(cbind(1, 0, 0, 1) ,nrow=2)
U <- t(chol(Sigma.pt))
numobs <- 20
set.seed(0)
random.normal <- matrix( rnorm( n = ncol(U) * numobs, mean = 3, sd = 1),
nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.pt <- as.data.frame(t(X))
names(dat.pt) <- c("y","x")
cor(dat.pt)
# fit the single case model
mdl.reg <- BMSC(y ~ x, data_ctrl = dat.ctrl, data_sc = dat.pt, seed = 10)
# summarize the data
summary(mdl.reg)
# plot the results of both patient and control group
plot(mdl.reg)
# plot the results of the patient
plot(mdl.reg, who = "single")
# plot the results of the difference between the control group and the patient
plot(mdl.reg, who = "delta")
# density plots
plot(mdl.reg, type = "area")
# histograms
plot(mdl.reg, type = "hist")
[Package bmscstan version 1.2.1.0 Index]