| mlm_summary {bmlm} | R Documentation |
Print a summary of the estimated multilevel mediation model
Description
Prints the estimated parameters (numerical summaries of the marginal posterior distributions).
Usage
mlm_summary(
mod = NULL,
level = 0.95,
pars = c("a", "b", "cp", "me", "c", "pme"),
digits = 2
)
Arguments
mod |
A |
level |
"Confidence" level; Defines the limits of the credible intervals. Defaults to .95 (i.e. displays 95% CIs.) |
pars |
Parameters to summarize. Defaults to main average-level parameters. See Details for more information. |
digits |
How many decimal points to display in the output. Defaults to 2. |
Details
After estimating a model (drawing samples from the joint posterior
probability distribution) with mlm(), show the estimated results
by using mlm_summary(fit), where fit is an object containing
the fitted model.
The function shows, for each parameter specified with pars,
the posterior mean, and limits of the Credible Interval as specified
by level. For example, level = .91 shows a
91% Credible Interval, which summarizes the central 91% mass of
the marginal posterior distribution.
Parameters
By default, mlm() estimates and returns a large number of parameters,
including the varying effects, and their associated standard deviations.
However, mlm_summay() by default only displays a subset of the
estimated parameters:
- a
Regression slope of the X -> M relationship.
- b
Regression slope of the M -> Y relationship.
- cp
Regression slope of the X -> Y relationship. (Direct effect.)
- me
Mediated effect (
a * b + \sigma_{{a_j}{b_j}}).- c
Total effect of X on Y. (
cp + me)- pme
Percent mediated effect.
The user may specify pars = NULL to display all estimated parameters.
Other options include e.g. pars = "tau" to display the varying
effects' standard deviations. To display all the group-level parameters
(also known as random effects) only, specify pars = "random".
With this argument, mlm_summary() prints the following parameters:
- tau_a
Standard deviation of subject-level
a_js.- tau_b
Standard deviation of subject-level
b_js.- tau_cp
Standard deviation of subject-level
c\'_js.- covab
Estimated covariance of
a_jandb_js.- corrab
Estimated correlation of
a_jandb_js.
To learn more about the additional parameters, refer to the Stan code
(cat(get_stancode(fit))).
Value
A data.frame summarizing the estimated multilevel
mediation model:
- Parameter
Name of parameter
- Mean
Mean of parameter's posterior distribution.
- Median
Median of parameter's posterior distribution.
- SE
Standard deviation of parameter's posterior distribution.
- ci_lwr
The lower limit of Credible Intervals.
- ci_upr
The upper limit of Credible Intervals.
- n_eff
Number of efficient samples.
- Rhat
Should be 1.00.
Author(s)
Matti Vuorre mv2521@columbia.edu