bayesplot {bmggum} | R Documentation |
bayesian convergence diagnosis plotting function
Description
This function provides plots including density plots, trace plots, and auto-correlation plots to aid model convergence diagnosis.
Usage
bayesplot(x, pars, plot, inc_warmup = FALSE)
Arguments
x |
returned object |
pars |
Names of plotted parameters. They can be "theta", "alpha", "delta", "tau", "cor", "lambda", or a subset of parameters. See vignette for bmggum for more details. |
plot |
Types of plots.They can be "density", "trace", or "autocorrelation". |
inc_warmup |
Whether to include warmup iterations or not when plotting. The default is FALSE. |
Value
Selected plots for selected parameters
Examples
Data <- c(1,4,2,3)
Data <- matrix(Data,nrow = 2)
deli <- c(1,-1,2,1)
deli <- matrix(deli,nrow = 2)
ind <- c(1,2)
ind <- t(ind)
cova <- c(0.70, -1.25)
mod <- bmggum(GGUM.Data=Data,delindex=deli,trait=2,ind=ind,option=4,covariate=cova,iter=5,chains=1)
bayesplot(mod, 'alpha', 'density', inc_warmup=FALSE)
[Package bmggum version 0.1.0 Index]