bmem {bmemLavaan} | R Documentation |
Mediation analysis based on bootstrap
Description
Mediation analysis based on bootstrap
Usage
bmem(data, model, v, method='list', ci='perc', cl=.95,
boot=1000, m=10, varphi=.1, st='i', robust=FALSE,
max_it=500, parallel=FALSE, ncore=1, ...)
Arguments
data |
A data set |
model |
RAM path for the mediaiton model |
v |
Indices of variables used in the mediation model. If omitted, all variables are used. |
method |
|
ci |
|
cl |
Confidence level. Can be a vector. |
boot |
Number of bootstraps |
m |
Number of imputations |
varphi |
Percent of data to be downweighted in robust method |
st |
Starting values |
robust |
Whether to use roubst method |
max_it |
Maximum number of iterations in EM |
parallel |
Whether to use parallel method to calculate. |
ncore |
Number of cores for parallel method. |
... |
Other options for |
Details
The indirect effect can be specified using equations such as a*b
, a*b+c
, and a*b*c+d*e+f
, which can be defined in 'model' parameter.
Value
The on-screen output includes the parameter estimates, bootstrap standard errors, and CIs.
Author(s)
Zhiyong Zhang, Shuigen Ming and Lijuan Wang
References
Zhang, Z., & Wang, L. (2013). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154-184. doi:10.1007/s11336-012-9301-5
Yuan, KH., Zhang, Z. Robust Structural Equation Modeling with Missing Data and Auxiliary Variables. Psychometrika 77, 803-826 (2012). doi:10.1007/s11336-012-9282-4
Examples
data("PoliticalDemocracy")
model_l <- '
ind60 =~ x1 + g*x2 + h*x3
dem60 =~ y1 + d*y2 + e*y3 + f*y4
dem65 =~ y5 + d*y6 + e*y7 + f*y8
dem60 ~ a * ind60
dem65 ~ c * ind60 + b * dem60
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
ind := a*b
'
fit_l <- bmem(data=PoliticalDemocracy, model = model_l, method='list',
ci='perc', boot=50, parallel = TRUE, ncore = 8)
summary(fit_l)