ltm_mcmc {bltm} | R Documentation |
MCMC LTM
Description
Given x
and y
performs the MCMC optimization.
Usage
ltm_mcmc(x, y, burnin = 2000, iter = 8000, K = 3,
prior_par = create_prior_parameters())
Arguments
x |
data points |
y |
response variable |
burnin |
number of burnin iterations |
iter |
number of iterations after burnin |
K |
parameter K |
prior_par |
List of parameters for prior distrributions.
See |
Value
matrix containing the posterior samples. Each line is one sample after the burnin period and each column is one of the parameters of the model. Columns are named to find the parameters with ease.
References
Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.
Examples
# Generates 10 series, each one with 500 observations and 2 regressors.
d_sim <- ltm_sim(
ns = 500, nk = 2, ni = 10,
vmu = matrix(c(.5,.5), nrow = 2),
mPhi = diag(2) * c(.99, .99),
mSigs = c(.1,.1),
dsig = .15,
vd = matrix(c(.4,.4), nrow = 2),
alpha = 0
)
# Fit model
fit_model <- ltm_mcmc(d_sim$mx, d_sim$vy, burnin = 0, iter = 2)
[Package bltm version 0.1.0 Index]