create_prior_parameters {bltm} | R Documentation |
Create the prior parameters.
Description
Define the priors parameters to be used with ltm_mcmc()
.
Usage
create_prior_parameters(a_mu0 = 0, a_s0 = 0.1, n0 = 6, S0 = 0.06,
v0 = 6, V0 = 0.06, m0 = 0, s0 = 1, a0 = 20, b0 = 1.5)
Arguments
a_mu0 |
mean of alpha normal distribution. |
a_s0 |
standard deviation of alpha's normal distribution. |
n0 |
sig2 inverse gamma shape parameter. |
S0 |
sig2 inverse gamma location parameter. |
v0 |
sig_eta inverse gamma shape parameter. |
V0 |
sig_eta inverse gamma location parameter. |
m0 |
mu normal's mean parameter. |
s0 |
mu normals standard deviation. |
a0 |
a0 beta's shape parameter. |
b0 |
a0 beta's location parameter. |
Details
Considering the following priors:
alpha ~ N(mu0, s0)
sig2 ~ IG(n0/2, S0/2)
sig_eta ~ IG(v0/2, V0/2)
mu ~ N(m0, s0^2)
(phi+1)/2 ~ Beta(a0, b0)
Value
List containing the hyperparameters used to fit the model. The default parameters are the same of the simulation example of the paper.
References
Nakajima, Jouchi, and Mike West. "Bayesian analysis of latent threshold dynamic models." Journal of Business & Economic Statistics 31.2 (2013): 151-164.