blr_gains_table {blorr} | R Documentation |
Gains table & lift chart
Description
Compute sensitivity, specificity, accuracy and KS statistics to generate the lift chart and the KS chart.
Usage
blr_gains_table(model, data = NULL)
## S3 method for class 'blr_gains_table'
plot(
x,
title = "Lift Chart",
xaxis_title = "% Population",
yaxis_title = "% Cumulative 1s",
diag_line_col = "red",
lift_curve_col = "blue",
plot_title_justify = 0.5,
print_plot = TRUE,
...
)
Arguments
model |
An object of class |
data |
A |
x |
An object of class |
title |
Plot title. |
xaxis_title |
X axis title. |
yaxis_title |
Y axis title. |
diag_line_col |
Diagonal line color. |
lift_curve_col |
Color of the lift curve. |
plot_title_justify |
Horizontal justification on the plot title. |
print_plot |
logical; if |
... |
Other inputs. |
Value
A tibble.
References
Agresti, A. (2007), An Introduction to Categorical Data Analysis, Second Edition, New York: John Wiley & Sons.
Agresti, A. (2013), Categorical Data Analysis, Third Edition, New York: John Wiley & Sons.
Thomas LC (2009): Consumer Credit Models: Pricing, Profit, and Portfolio. Oxford, Oxford Uni-versity Press.
Sobehart J, Keenan S, Stein R (2000): Benchmarking Quantitative Default Risk Models: A Validation Methodology, Moody’s Investors Service.
See Also
Other model validation techniques:
blr_confusion_matrix()
,
blr_decile_capture_rate()
,
blr_decile_lift_chart()
,
blr_gini_index()
,
blr_ks_chart()
,
blr_lorenz_curve()
,
blr_roc_curve()
,
blr_test_hosmer_lemeshow()
Examples
model <- glm(honcomp ~ female + read + science, data = hsb2,
family = binomial(link = 'logit'))
# gains table
blr_gains_table(model)
# lift chart
k <- blr_gains_table(model)
plot(k)