clu {blockmodeling} | R Documentation |
Function for extraction of some elements for objects, returend by functions for Generalized blockmodeling
Description
Functions for extraction of partition (clu
), all best partitions (partitions
),
image or blockmodel (IM
)) and total error or inconsistency (err
) for objects,
returned by functions critFunC
or optRandomParC
.
Usage
clu(res, which = 1, ...)
partitions(res)
err(res, ...)
IM(res, which = 1, drop = TRUE, ...)
EM(res, which = 1, drop = TRUE, ...)
Arguments
res |
Result of function |
which |
From |
... |
Not used. |
drop |
If |
Value
The desired element.
Author(s)
Aleš Žiberna
References
Doreian, P., Batagelj, V., & Ferligoj, A. (2005). Generalized blockmodeling, (Structural analysis in the social sciences, 25). Cambridge [etc.]: Cambridge University Press.
Žiberna, A. (2007). Generalized Blockmodeling of Valued Networks. Social Networks, 29(1), 105-126. doi: 10.1016/j.socnet.2006.04.002
Žiberna, A. (2008). Direct and indirect approaches to blockmodeling of valued networks in terms of regular equivalence. Journal of Mathematical Sociology, 32(1), 57-84. doi: 10.1080/00222500701790207
See Also
critFunC
, plot.mat
, optRandomParC
Examples
n <- 8 # If larger, the number of partitions increases dramatically,
# as does if we increase the number of clusters
net <- matrix(NA, ncol = n, nrow = n)
clu <- rep(1:2, times = c(3, 5))
tclu <- table(clu)
net[clu == 1, clu == 1] <- rnorm(n = tclu[1] * tclu[1], mean = 0, sd = 1)
net[clu == 1, clu == 2] <- rnorm(n = tclu[1] * tclu[2], mean = 4, sd = 1)
net[clu == 2, clu == 1] <- rnorm(n = tclu[2] * tclu[1], mean = 0, sd = 1)
net[clu == 2, clu == 2] <- rnorm(n = tclu[2] * tclu[2], mean = 0, sd = 1)
# We select a random partition and then optimize it
all.par <- nkpartitions(n = n, k = length(tclu))
# Forming the partitions
all.par <- lapply(apply(all.par, 1, list),function(x) x[[1]])
# to make a list out of the matrix
res <- optParC(M = net,
clu = all.par[[sample(1:length(all.par), size = 1)]],
approaches = "hom", homFun = "ss", blocks = "com")
plot(res) # Hopefully we get the original partition
clu(res) # Hopefully we get the original partition
err(res) # Error
IM(res) # Image matrix/array.
EM(res) # Error matrix/array.