bgrowth {blavaan}R Documentation

Fit Growth Curve Models

Description

Fit a Growth Curve model.

Usage

bgrowth(..., cp = "srs", dp = NULL, n.chains = 3,
burnin, sample, adapt, mcmcfile = FALSE, mcmcextra = list(), 
inits = "simple", convergence = "manual", target = "stan",
save.lvs = FALSE, wiggle = NULL, wiggle.sd = 0.1, prisamp = FALSE,
jags.ic = FALSE, seed = NULL, bcontrol = list())

Arguments

...

Default lavaan arguments. See lavaan.

cp

Handling of prior distributions on covariance parameters: possible values are "srs" (default) or "fa". Option "fa" is only available for target="jags".

dp

Default prior distributions on different types of parameters, typically the result of a call to dpriors(). See the dpriors() help file for more information.

n.chains

Number of desired MCMC chains.

burnin

Number of burnin/warmup iterations (not including the adaptive iterations, for target="jags"). Defaults to 4000 or target="jags" and 500 for Stan targets.

sample

The total number of samples to take after burnin. Defaults to 10000 for target="jags" and 1000 for Stan targets.

adapt

For target="jags", the number of adaptive iterations to use at the start of sampling. Defaults to 1000.

mcmcfile

If TRUE, the JAGS/Stan model will be written to file (in the lavExport directory). Can also supply a character string, which serves as the name of the directory to which files will be written.

mcmcextra

A list with potential names syntax (unavailable for target="stan"), monitor, data, and llnsamp. The syntax object is a text string containing extra code to insert in the JAGS/Stan model syntax. The data object is a list of extra data to send to the JAGS/Stan model. If moment_match_k_threshold is specified within data the looic of the model will be calculated using moment matching. The monitor object is a character vector containing extra JAGS/Stan parameters to monitor. The llnsamp object is only relevant to models with ordinal variables, and specifies the number of samples that should be drawn to approximate the model log-likelihood (larger numbers imply higher accuracy and longer time). This log-likelihood is specifically used to compute information criteria.

inits

If it is a character string, the options are currently "simple" (default), "Mplus", "prior", or "jags". In the first two cases, parameter values are set as though they will be estimated via ML (see lavaan). The starting parameter value for each chain is then perturbed from the original values through the addition of random uniform noise. If "prior" is used, the starting parameter values are obtained based on the prior distributions (while also trying to ensure that the starting values will not crash the model estimation). If "jags", no starting values are specified and JAGS will choose values on its own (and this will probably crash Stan targets). You can also supply a list of starting values for each chain, where the list format can be obtained from, e.g., blavInspect(fit, "inits"). Finally, you can specify starting values in a similar way to lavaan, using the lavaan start argument (see the lavaan documentation for all the options there). In this case, you should also set inits="simple", and be aware that the same starting values will be used for each chain.

convergence

Useful only for target="jags". If "auto", parameters are sampled until convergence is achieved (via autorun.jags()). In this case, the arguments burnin and sample are passed to autorun.jags() as startburnin and startsample, respectively. Otherwise, parameters are sampled as specified by the user (or by the run.jags defaults).

target

Desired MCMC sampling, with "stan" (pre-compiled marginal approach) as default. Also available is "vb", which calls the rstan function vb(). Other options include "jags", "stancond", and "stanclassic", which sample latent variables and provide some greater functionality (because syntax is written "on the fly"). But they are slower and less efficient.

save.lvs

Should sampled latent variables (factor scores) be saved? Logical; defaults to FALSE

wiggle

Labels of equality-constrained parameters that should be "approximately" equal. Can also be "intercepts", "loadings", "regressions", "means".

wiggle.sd

The prior sd (of normal distribution) to be used in approximate equality constraints. Can be one value, or (for target="stan") a numeric vector of values that is the same length as wiggle.

prisamp

Should samples be drawn from the prior, instead of the posterior (target="stan" only)? Logical; defaults to FALSE

jags.ic

Should DIC be computed the JAGS way, in addition to the BUGS way? Logical; defaults to FALSE

seed

A vector of length n.chains (for target "jags") or an integer (for target "stan") containing random seeds for the MCMC run. If NULL, seeds will be chosen randomly.

bcontrol

A list containing additional parameters passed to run.jags (or autorun.jags) or stan. See the manpage of those functions for an overview of the additional parameters that can be set.

Details

The bgrowth function is a wrapper for the more general blavaan function, using the following default lavaan arguments: meanstructure = TRUE, int.ov.free = FALSE, int.lv.free = TRUE, auto.fix.first = TRUE (unless std.lv = TRUE), auto.fix.single = TRUE, auto.var = TRUE, auto.cov.lv.x = TRUE, auto.th = TRUE, auto.delta = TRUE, and auto.cov.y = TRUE.

Value

An object of class blavaan, for which several methods are available, including a summary method.

References

Edgar C. Merkle, Ellen Fitzsimmons, James Uanhoro, & Ben Goodrich (2021). Efficient Bayesian Structural Equation Modeling in Stan. Journal of Statistical Software, 100(6), 1-22. URL http://www.jstatsoft.org/v100/i06/.

Edgar C. Merkle & Yves Rosseel (2018). blavaan: Bayesian Structural Equation Models via Parameter Expansion. Journal of Statistical Software, 85(4), 1-30. URL http://www.jstatsoft.org/v85/i04/.

Yves Rosseel (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1-36. URL http://www.jstatsoft.org/v48/i02/.

See Also

blavaan

Examples

## Not run: 
## linear growth model with a time-varying covariate
data(Demo.growth, package = "lavaan")

model.syntax <- '
  # intercept and slope with fixed coefficients
    i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
    s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

  # regressions
    i ~ x1 + x2
    s ~ x1 + x2

  # time-varying covariates
    t1 ~ c1
    t2 ~ c2
    t3 ~ c3
    t4 ~ c4
'

fit <- bgrowth(model.syntax, data = Demo.growth)
summary(fit)

## End(Not run)

[Package blavaan version 0.5-5 Index]