Bayesian Kernel Machine Regression


[Up] [Top]

Documentation for package ‘bkmr’ version 0.2.0

Help Pages

CalcGroupPIPs Calculate group-specific posterior inclusion probabilities
CalcPIPs Calculate variable-specific posterior inclusion probabilities
CalcWithinGroupPIPs Calculate conditional predictor specific posterior inclusion probabilities
ComputePostmeanHnew Compute the posterior mean and variance of 'h' at a new predictor values
ComputePostmeanHnew.approx Compute the posterior mean and variance of 'h' at a new predictor values
ComputePostmeanHnew.exact Compute the posterior mean and variance of 'h' at a new predictor values
ExtractEsts Extract summary statistics
ExtractPIPs Extract posterior inclusion probabilities (PIPs) from BKMR model fit
ExtractSamps Extract samples
InvestigatePrior Investigate prior
kmbayes Fit Bayesian kernel machine regression
OverallRiskSummaries Calculate overall risk summaries
PlotPriorFits Plot of exposure-response function from univariate KMR fot
PredictorResponseBivar Predict the exposure-response function at a new grid of points
PredictorResponseBivarLevels Plot cross-sections of the bivariate predictor-response function
PredictorResponseUnivar Plot univariate predictor-response function on a new grid of points
print.bkmrfit Print basic summary of BKMR model fit
SamplePred Obtain posterior samples of predictions at new points
set_verbose_opts Options for printing summary of model fit to the console
SimData Simulate dataset
SingVarIntSummaries Single Variable Interaction Summaries
SingVarRiskSummaries Single Variable Risk Summaries
summary.bkmrfit Summarizing BKMR model fits
SummarySamps Compute summary statistics
TracePlot Trace plot