simulate.bizicount {bizicount} | R Documentation |
Simulating response values using parameters from fitted bizicount models
Description
Simulates random response values using the fitted conditional
mean function for each margin of a bizicount-class
object.
Primarily for use with the DHARMa
package.
Usage
## S3 method for class 'bizicount'
simulate(object, nsim = 250, seed = 123, ...)
Arguments
object |
A fitted |
nsim |
Number of simulated response values from the fitted model. E.g.,
|
seed |
Seed used for simulating from fitted model. If |
... |
Ignored. |
Value
A length 2 list, with each entry containing a numeric n X
nsim
matrix for each margin of the bizicount model. Rows index
the observation, and columns index the simulated dataset number.
Author(s)
John Niehaus
References
Florian Hartig (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.5. https://CRAN.R-project.org/package=DHARMa
See Also
createDHARMa
, simulateResiduals
Examples
## SETUP
set.seed(123)
n = 150
# define a function to simulate from a gaussian copula
# first margin is zero-inflated negative binomial (zinb)
# second margin is zero-inflated poisson (zip)
# Note: marginal distributions are hard-coded in function, including
# inverse dispersion parameter for zinb.
gen = function(n,
b1,
b2,
g1,
g2,
dep) {
k1 = length(b1)
k2 = length(b2)
X1 = cbind(1, matrix(rbinom(n * (k1 - 1), 1, .5), ncol = k1 - 1))
X2 = cbind(1, matrix(rexp(n * (k2 - 1), 3), ncol = k2 - 1))
lam1 = exp(X1 %*% b1)
lam2 = exp(X2 %*% b2)
Z1 = cbind(1, matrix(runif(n * (k1 - 1), -1, 1), ncol = k1 - 1))
Z2 = cbind(1, matrix(rnorm(n * (k2 - 1)), ncol = k2 - 1))
psi1 = plogis(Z1 %*% g1)
psi2 = plogis(Z2 %*% g2)
norm_vars = MASS::mvrnorm(
n,
mu = c(0, 0),
Sigma = matrix(c(1, dep, dep, 1), ncol =2)
)
U = pnorm(norm_vars)
y1 = qzinb(U[, 1],
mu = lam1,
psi = psi1,
size = .3)
y2 = qzip(U[, 2],
lambda = lam2,
psi = psi2)
dat = data.frame(
X1 = X1[, -1],
X2 = X2[, -1],
Z1 = Z1[, -1],
Z2 = Z2[, -1],
y1,
y2,
lam1,
lam2,
psi1,
psi2
)
return(dat)
}
# define parameters
b1 = c(1, -2, 3)
b2 = c(-1, 3, 1)
g1 = c(2, -1.5, 2)
g2 = c(-1, -3.75, 1.25)
rho = .5
# generate data
dat = gen(n, b1, b2, g1, g2, rho)
f1 = y1 ~ X1.1 + X1.2 | Z1.1 + Z1.2
f2 = y2 ~ X2.1 + X2.2 | Z2.1 + Z2.2
## END SETUP
# estimate model
mod = bizicount(f1, f2, dat, cop = "g", margins = c("zinb", "zip"), keep=TRUE)
# simulate from fitted model
sims = simulate(mod, nsim = 150)
# input sims to DHARMa for diagnostics
# margin 1
d1 = DHARMa::createDHARMa(
simulatedResponse = sims[[1]],
observedResponse = dat$y1,
fittedPredictedResponse = fitted(mod)[,1],
integerResponse = TRUE,
method = "PIT"
)
# margin 2
d2 = DHARMa::createDHARMa(
simulatedResponse = sims[[2]],
observedResponse = dat$y2,
fittedPredictedResponse = fitted(mod)[,2],
integerResponse = TRUE,
method = "PIT"
)
# test each margin
DHARMa::testResiduals(d1)
DHARMa::testResiduals(d2)