lambda1Roy {bivgeom}R Documentation

Bivariate failure rates

Description

Bivariate failure rate λ1\lambda_1

Usage

lambda1Roy(x, y, theta1, theta2, theta3)

Arguments

x

observation from the first variable

y

observation from the second variable

theta1

paramater θ1\theta_1

theta2

paramater θ2\theta_2

theta3

paramater θ3\theta_3

Details

It is defined as P(X=x,Yy)/P(Xx,Yy)P(X=x,Y\geq y)/P(X\geq x,Y\geq y). For this model, λ1(x,y)=1θ1θ3y\lambda_1(x,y)=1-\theta_1\theta_3^y

Value

Value of the bivariate failure rate λ1\lambda_1 for Roy's bivariate geometric model (Roy, 1993)

Author(s)

Alessandro Barbiero

References

Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.

See Also

lambda2Roy

Examples

theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# bivariate failure rate lambda1
# computed in x=1, y=2
x <- 1
y <- 2
lambda1Roy(x,y,theta1,theta2,theta3)

[Package bivgeom version 1.0 Index]