predict_samples {bistablehistory} | R Documentation |
Computes prediction for a each sample.
Description
Computing prediction for each sample, recomputing cumulative history and uses fitted parameter values.
Usage
predict_samples(
family,
fixedN,
randomN,
lmN,
istate,
duration,
is_used,
run_start,
session_tmean,
irandom,
fixed,
tau_ind,
mixed_state_ind,
history_init,
a,
bH,
bF,
sigma
)
Arguments
family |
int, distribution family: gamma (1), lognormal(2), or normal (3). |
fixedN |
int, number of fixed parameters (>= 0). |
randomN |
int, number of random factors (>= 1). |
lmN |
int, number of linear models (>= 1). |
istate |
IntegerVector, zero-based perceptual state 0 or 1, 2 is mixed state. |
duration |
DoubleVector, duration of a dominance phase. |
is_used |
IntegerVector, whether dominance phase is used for prediction (1) or not (0). |
run_start |
IntegerVector, 1 whenever a new run starts. |
session_tmean |
DoubleVector, average dominance phase duration. |
irandom |
IntegerVector, zero-based index of a random effect. |
fixed |
NumericMatrix, matrix with fixed effect values. |
tau_ind |
NumericMatrix, matrix with samples of tau for each random level. |
mixed_state_ind |
NumericMatrix, matrix with samples of mixed_state for each random level. |
history_init |
DoubleVector, Initial values of history for a run |
a |
NumericMatrix, matrix with samples of a (intercept) for each random level. |
bH |
NumericMatrix, matrix with sample of bH for each linear model and random level. |
bF |
NumericMatrix, matrix with sample of bF for each linear model and fixed factor. |
sigma |
DoubleVector, samples of sigma. |
Value
NumericMatrix with predicted durations for each sample.