sFit {bisque} | R Documentation |
Fit a spatially mean-zero spatial Gaussian process model
Description
Uses a Gibbs sampler to estimate the parameters of a Matern covariance function used to model observations from a Gaussian process with mean 0.
Usage
sFit(
x,
coords,
nSamples,
thin = 1,
rw.initsd = 0.1,
inits = list(),
C = 1,
alpha = 0.44,
priors = list(sigmasq = list(a = 2, b = 1), rho = list(L = 0, U = 1), nu = list(L = 0,
U = 1))
)
Arguments
x |
Observation of a spatial Gaussian random field, passed as a vector |
coords |
Spatial coordinates of the observation |
nSamples |
(thinned) number of MCMC samples to generate |
thin |
thinning to be used within the returned MCMC samples |
rw.initsd |
initial standard devaition for random walk proposals. this parameter will be adaptively tuned during sampling |
inits |
list of initial parameters for the MCMC chain |
C |
scale factor used during tuning of the random walk proposal s.d. |
alpha |
target acceptance rate for which the random walk proposals should optimize |
priors |
parameters to specify the prior distributions for the model |
Examples
library(fields)
simulate.field = function(n = 100, range = .3, smoothness = .5, phi = 1){
# Simulates a mean-zero spatial field on the unit square
#
# Parameters:
# n - number of spatial locations
# range, smoothness, phi - parameters for Matern covariance function
coords = matrix(runif(2*n), ncol=2)
Sigma = Matern(d = as.matrix(dist(coords)),
range = range, smoothness = smoothness, phi = phi)
list(coords = coords,
params = list(n=n, range=range, smoothness=smoothness, phi=phi),
x = t(chol(Sigma)) %*% rnorm(n))
}
# simulate data
x = simulate.field()
# configure gibbs sampler
it = 100
# run sampler using default posteriors
post.samples = sFit(x = x$x, coords = x$coords, nSamples = it)
# build kriging grid
cseq = seq(0, 1, length.out = 10)
coords.krig = expand.grid(x = cseq, y = cseq)
# sample from posterior predictive distribution
burn = 75
samples.krig = sKrig(x$x, post.samples, coords.krig = coords.krig, burn = burn)
[Package bisque version 1.0.2 Index]