ipd.run.parallel {bipd} | R Documentation |
Run the model using the ipd object with parallel computation
Description
This function runs the model through parallel computation using dclone R package. Before running this function, we need to specify data, prior, JAGS code, etc. using ipd.model type function.
Usage
ipd.run.parallel(
ipd,
pars.save = NULL,
inits = NULL,
n.chains = 2,
n.adapt = 1000,
n.burnin = 1000,
n.iter = 10000
)
Arguments
ipd |
ipd object created from ipd.model type function |
pars.save |
parameters to save. For instance, "beta" - coefficients for main effects; "gamma" - coefficients for effect modifiers; "delta" - average treatment effect |
inits |
initial values specified for the parameters to save |
n.chains |
number of MCMC chains to sample |
n.adapt |
number of iterations for adaptation (Note that the samples from adaptation phase is non-Markovian and do not constitute a Markov chain) |
n.burnin |
number of iterations for burn-in |
n.iter |
number of iterations to run after the adaptation |
Value
MCMC samples stored using JAGS. The returned samples have the form of mcmc.list and coda functions can be directly applied.
Examples
ds <- generate_ipdma_example(type = "continuous")
ipd <- with(ds, ipdma.model.onestage(y = y, study = studyid, treat = treat, X = cbind(z1, z2),
response = "normal", shrinkage = "none"))
samples <- ipd.run.parallel(ipd, n.chains = 2, n.burnin = 500, n.iter = 5000)