spatialpred {biotools} | R Documentation |
Spatial Predictions Based on the Circular Variable-Radius Moving Window Method
Description
A heuristic method to perform spatial predictions. The method consists of a local interpolator with stochastic features. It allows to build effective detailed maps and to estimate the spatial dependence without any assumptions on the spatial process.
Usage
spatialpred(coords, data, grid)
Arguments
coords |
a data frame or numeric matrix containing columns with geographic coordinates |
data |
a numeric vector of compatible dimension with |
grid |
a data frame or numeric matrix containing columns with geographic coordinates where |
Details
If grid
receives the same input as coords
, spatialpred
will calculate the Percenntual Absolute Mean Error (PAME) of predictions.
Value
A data.frame containing spatial predictions, standard errors, the radius and the number of observations used in each prediction over the grid.
Warning
Depending on the dimension of coords
and/or grid
, spatialpred()
can be time demanding.
Author(s)
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
References
Da Silva, A.R., Silva, A.P.A., Tiago-Neto, L.J. (2020) A new local stochastic method for predicting data with spatial heterogeneity. ACTA SCIENTIARUM-AGRONOMY, 43:e49947.
See Also
Examples
# data(moco)
# p <- spatialpred(coords = moco[, 1:2], data = rnorm(206), grid = moco[, 1:2])
# note: using coords as grid to calculate PAME
# head(p)
# lattice::levelplot(pred ~ Lat*Lon, data = p)
# End (not run)