D2.disc {biotools} | R Documentation |
Discriminant Analysis Based on Mahalanobis Distance
Description
A function to perform discriminant analysis based on the squared generalized Mahalanobis distance (D2) of the observations to the center of the groups.
Usage
## Default S3 method:
D2.disc(data, grouping, pooled.cov = NULL)
## S3 method for class 'D2.disc'
print(x, ...)
## S3 method for class 'D2.disc'
predict(object, newdata = NULL, ...)
Arguments
data |
a numeric |
grouping |
a vector of length n containing the class of each observation (row) in |
pooled.cov |
a |
x , object |
an object of class |
newdata |
numeric |
... |
further arguments. |
Value
A list of
call |
the call which produced the result. |
data |
numeric matrix; the input data. |
D2 |
a matrix containing the Mahalanobis distances between each row of |
means |
a matrix containing the vector of means of each class in |
pooled |
the pooled covariance matrix. |
confusion.matrix |
an object of class |
Author(s)
Anderson Rodrigo da Silva <anderson.agro@hotmail.com>
References
Manly, B.F.J. (2004) Multivariate statistical methods: a primer. CRC Press. (p. 105-106).
Mahalanobis, P.C. (1936) On the generalized distance in statistics. Proceedings of The National Institute of Sciences of India, 12:49-55.
See Also
Examples
data(iris)
(disc <- D2.disc(iris[, -5], iris[, 5]))
first10 <- iris[1:10, -5]
predict(disc, first10)
predict(disc, iris[, -5])$class
# End (not run)