ridge_regression {biosensors.usc} | R Documentation |
ridge_regression
Description
Performs a Ridge regression.
Usage
ridge_regression(data, response, w=NULL, method="manhattan", type="gaussian")
Arguments
data |
A biosensor object. |
response |
The name of the scalar response. The response must be a column name in data$variables. |
w |
A weight function. |
method |
The distance measure to be used (@seealso parallelDist::parDist). By default manhattan distance. |
type |
The kernel type ("gaussian" or "lapla"). By default gaussian distance. |
Value
An object containing the components:
best_alphas
Best coefficients obtained with leave-one-out cross-validation criteria.
best_kernel
The kernel matrix of the best solution.
best_sigma
The sigma parameter of the best solution.
best_lambda
The lambda parameter of the best solution.
sigmas
The sigma parameters used in the fitting according to the median heuristic fitting criteria.
predictions
A matrix of predictions.
r2
R-square of the different models fitted.
error
Mean squared-error of the different models fitted.
predictions_cross
A matrix of predictions obtained with leave-one-out cross-validation criteria.
Examples
# Data extracted from the paper: Hall, H., Perelman, D., Breschi, A., Limcaoco, P., Kellogg, R.,
# McLaughlin, T., Snyder, M., Glucotypes reveal new patterns of glucose dysregulation, PLoS
# biology 16(7), 2018.
file1 = system.file("extdata", "data_1.csv", package = "biosensors.usc")
file2 = system.file("extdata", "variables_1.csv", package = "biosensors.usc")
data = load_data(file1, file2)
regm = ridge_regression(data, "BMI")