hypothesis_testing {biosensors.usc} | R Documentation |
hypothesis_testing
Description
Hypothesis testing between two random samples of distributional representations to detect differences in scale and localization (ANOVA test) or distributional differences (Energy distance).
Usage
hypothesis_testing(data1, data2, permutations=100)
Arguments
data1 |
A biosensor object. First population. |
data2 |
A biosensor object. Second population. |
permutations |
Number of permutations used in the energy distance calibration test. |
Value
An object of class biotest:
p1_mean
Quantile mean of the first population.
p1_variance
Quantile variance of the first population.
p2_mean
Quantile mean of the second population.
p2_variance
Quantile variance of the second population.
energy_pvalue
P-value of the energy distance test.
anova_pvalue
P-value of the ANOvA-Fréchet test.
Examples
# Data extracted from the paper: Hall, H., Perelman, D., Breschi, A., Limcaoco, P., Kellogg, R.,
# McLaughlin, T., Snyder, M., Glucotypes reveal new patterns of glucose dysregulation, PLoS
# biology 16(7), 2018.
file1 = system.file("extdata", "data_1.csv", package = "biosensors.usc")
file2 = system.file("extdata", "variables_1.csv", package = "biosensors.usc")
data1 = load_data(file1, file2)
file3 = system.file("extdata", "data_2.csv", package = "biosensors.usc")
file4 = system.file("extdata", "variables_2.csv", package = "biosensors.usc")
data2 = load_data(file3, file4)
htest = hypothesis_testing(data1, data2)
[Package biosensors.usc version 1.0 Index]