clustering {biosensors.usc} | R Documentation |
clustering
Description
Performs energy clustering with Wasserstein distance using quantile distributional representations as covariates.
Usage
clustering(data, clusters=3, iter_max=10, restarts=1)
Arguments
data |
A biosensor object. |
clusters |
Number of clusters. |
iter_max |
Maximum number of iterations. |
restarts |
Number of restarts. |
Value
An object of class bclustering:
data
A data frame with biosensor raw data.
result
A kgroups object (see energy library).
Examples
# Data extracted from the paper: Hall, H., Perelman, D., Breschi, A., Limcaoco, P., Kellogg, R.,
# McLaughlin, T., Snyder, M., Glucotypes reveal new patterns of glucose dysregulation, PLoS
# biology 16(7), 2018.
file1 = system.file("extdata", "data_1.csv", package = "biosensors.usc")
file2 = system.file("extdata", "variables_1.csv", package = "biosensors.usc")
data = load_data(file1, file2)
clus = clustering(data, clusters=3)
[Package biosensors.usc version 1.0 Index]