netclu_leiden {bioregion} | R Documentation |
This function finds communities in a (un)weighted undirected network based on the Leiden algorithm of Traag, van Eck & Waltman.
netclu_leiden(
net,
weight = TRUE,
index = names(net)[3],
objective_function = c("CPM", "modularity"),
resolution_parameter = 1,
beta = 0.01,
initial_membership = NULL,
n_iterations = 2,
vertex_weights = NULL,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE
)
net |
the output object from |
weight |
a |
index |
name or number of the column to use as weight. By default,
the third column name of |
objective_function |
Whether to use the Constant Potts Model (CPM) or modularity. Must be either "CPM" or "modularity". |
resolution_parameter |
The resolution parameter to use. Higher resolutions lead to more smaller communities, while lower resolutions lead to fewer larger communities. |
beta |
Parameter affecting the randomness in the Leiden algorithm. This affects only the refinement step of the algorithm. |
initial_membership |
If provided, the Leiden algorithm will try to improve this provided membership. If no argument is provided, the aglorithm simply starts from the singleton partition. |
n_iterations |
the number of iterations to iterate the Leiden algorithm. Each iteration may improve the partition further. |
vertex_weights |
the vertex weights used in the Leiden algorithm. If this is not provided, it will be automatically determined on the basis of the objective_function. Please see the details of this function how to interpret the vertex weights. |
bipartite |
a |
site_col |
name or number for the column of site nodes (i.e. primary nodes). |
species_col |
name or number for the column of species nodes (i.e. feature nodes). |
return_node_type |
a |
algorithm_in_output |
a |
This function is based on the Leiden algorithm (Traag et al. 2019) as implemented in the igraph package (cluster_leiden).
A list
of class bioregion.clusters
with five slots:
name: character string
containing the name of the algorithm
args: list
of input arguments as provided by the user
inputs: list
of characteristics of the clustering process
algorithm: list
of all objects associated with the
clustering procedure, such as original cluster objects (only if
algorithm_in_output = TRUE
)
clusters: data.frame
containing the clustering results
In the algorithm
slot, if algorithm_in_output = TRUE
, users can
find an "communities" object, output of
cluster_leiden.
Although this algorithm was not primarily designed to deal with bipartite
network, it is possible to consider the bipartite network as unipartite
network (bipartite = TRUE
).
Do not forget to indicate which of the first two columns is
dedicated to the site nodes (i.e. primary nodes) and species nodes (i.e.
feature nodes) using the arguments site_col
and species_col
.
The type of nodes returned in the output can be chosen with the argument
return_node_type
equal to "both"
to keep both types of nodes,
"sites"
to preserve only the sites nodes and "species"
to
preserve only the species nodes.
Maxime Lenormand (maxime.lenormand@inrae.fr), Pierre Denelle (pierre.denelle@gmail.com) and Boris Leroy (leroy.boris@gmail.com)
Traag VA, Waltman L, Van Eck NJ (2019). “From Louvain to Leiden: guaranteeing well-connected communities.” Scientific reports, 9(1), 5233. Publisher: Nature Publishing Group UK London.
comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)
net <- similarity(comat, metric = "Simpson")
com <- netclu_leiden(net)
net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_leiden(net_bip, bipartite = TRUE)