| bm_Tuning {biomod2} | R Documentation |
Tune models parameters
Description
This internal biomod2 function allows to tune single model parameters and select more efficient ones based on an evaluation metric.
Usage
bm_Tuning(
model,
tuning.fun,
do.formula = FALSE,
do.stepAIC = FALSE,
bm.options,
bm.format,
calib.lines = NULL,
metric.eval = "TSS",
metric.AIC = "AIC",
weights = NULL,
ctrl.train = NULL,
params.train = list(ANN.size = c(2, 4, 6, 8), ANN.decay = c(0.001, 0.01, 0.05, 0.1),
ANN.bag = FALSE, FDA.degree = 1:2, FDA.nprune = 2:38, GAM.select = c(TRUE, FALSE),
GAM.method = c("GCV.Cp", "GACV.Cp", "REML", "P-REML", "ML", "P-ML"), GAM.span =
c(0.3, 0.5, 0.7), GAM.degree = 1, GBM.n.trees = c(500, 1000, 2500),
GBM.interaction.depth = seq(2, 8, by = 3), GBM.shrinkage = c(0.001, 0.01, 0.1),
GBM.n.minobsinnode = 10, MARS.degree = 1:2, MARS.nprune = 2:max(38, 2 *
ncol(bm.format@data.env.var) + 1), MAXENT.algorithm = "maxnet",
MAXENT.parallel
= TRUE, RF.mtry = 1:min(10, ncol(bm.format@data.env.var)), SRE.quant = c(0, 0.0125,
0.025, 0.05, 0.1), XGBOOST.nrounds = 50, XGBOOST.max_depth = 1, XGBOOST.eta = c(0.3,
0.4), XGBOOST.gamma = 0, XGBOOST.colsample_bytree = c(0.6, 0.8),
XGBOOST.min_child_weight = 1, XGBOOST.subsample = 0.5)
)
Arguments
model |
a |
tuning.fun |
a |
do.formula |
(optional, default |
do.stepAIC |
(optional, default |
bm.options |
a |
bm.format |
a |
calib.lines |
(optional, default |
metric.eval |
a |
metric.AIC |
a |
weights |
(optional, default |
ctrl.train |
(optional, default |
params.train |
a |
Details
Concerning ctrl.train parameter :
Set by default to :
ctrl.train <- caret::trainControl(method = "repeatedcv", repeats = 3, number = 10,
summaryFunction = caret::twoClassSummary,
classProbs = TRUE, returnData = FALSE)
Concerning params.train parameter :
All elements of the list must have names matching model.parameter_name format,
parameter_name being one of the parameter of the tuning.fun function called by
caret package and that can be found through the getModelInfo
function.
Currently, the available parameters to be tuned are the following :
- ANN
size,decay,bag- CTA
maxdepth- FDA
degree,nprune- GAM.gam
span,degree- GAM.mgcv
select,method- GBM
n.trees,interaction.depth,shrinkage,n.minobsinnode- MARS
degree,nprune- MAXENT
algorithm,parallel- RF
mtry- SRE
quant- XGBOOST
nrounds,max_depth,eta,gamma,colsampl_bytree,min_child_weight,subsample
The expand.grid function is used to build a matrix containing all
combinations of parameters to be tested.
Value
A BIOMOD.models.options object (see bm_ModelingOptions) with
optimized parameters
Note
No tuning for
GLMandMAXNET-
MAXENTis tuned throughENMevaluatefunction which is calling either :maxnet (by defining
MAXENT.algorithm = 'maxnet') (default)Java version of Maxent defined in dismo package (by defining
MAXENT.algorithm = 'maxent.jar')
-
SREis tuned throughbm_SREfunction All other models are tuned through
trainfunctionNo optimization of formula for
MAXENT,MAXNET,SREandXGBOOSTNo interaction included in formula for
CTAVariables selection only for
GAM.gamandGLM
Author(s)
Frank Breiner, Maya Gueguen, Helene Blancheteau
See Also
trainControl, train,
ENMevaluate,
ModelsTable, BIOMOD.models.options,
bm_ModelingOptions, BIOMOD_Modeling
Other Secundary functions:
bm_BinaryTransformation(),
bm_CrossValidation(),
bm_FindOptimStat(),
bm_MakeFormula(),
bm_ModelingOptions(),
bm_PlotEvalBoxplot(),
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot(),
bm_PseudoAbsences(),
bm_RunModelsLoop(),
bm_SRE(),
bm_SampleBinaryVector(),
bm_SampleFactorLevels(),
bm_VariablesImportance()
Examples
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# --------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# --------------------------------------------------------------- #
# List of all models currently available in `biomod2` (and their related package and function)
# Some of them can be tuned through the `train` function of the `caret` package
# (and corresponding training function to be used is indicated)
data(ModelsTable)
ModelsTable
allModels <- c('ANN', 'CTA', 'FDA', 'GAM', 'GBM', 'GLM'
, 'MARS', 'MAXENT', 'MAXNET', 'RF', 'SRE', 'XGBOOST')
# default parameters
opt.d <- bm_ModelingOptions(data.type = 'binary',
models = allModels,
strategy = 'default')
# tune parameters for Random Forest model
tuned.rf <- bm_Tuning(model = 'RF',
tuning.fun = 'rf', ## see in ModelsTable
do.formula = FALSE,
bm.options = opt.d@options$RF.binary.randomForest.randomForest,
bm.format = myBiomodData)
tuned.rf
## Not run:
# tune parameters for GAM (from mgcv package) model
tuned.gam <- bm_Tuning(model = 'GAM',
tuning.fun = 'gam', ## see in ModelsTable
do.formula = TRUE,
do.stepAIC = TRUE,
bm.options = opt.d@options$GAM.binary.mgcv.gam,
bm.format = myBiomodData)
tuned.gam
## End(Not run)