bm_SRE {biomod2} | R Documentation |
Surface Range Envelope
Description
This internal biomod2 function allows the user to run a rectilinear surface range envelop (SRE) (equivalent to BIOCLIM) using the extreme percentiles (as recommended by Nix or Busby, see References and Details).
Usage
bm_SRE(
resp.var = NULL,
expl.var = NULL,
new.env = NULL,
quant = 0.025,
do.extrem = FALSE
)
Arguments
resp.var |
a |
expl.var |
a |
new.env |
a |
quant |
a |
do.extrem |
(optional, default |
Details
Please refer to References to get more information about surface range envelop models.
This method is highly influenced by the extremes of the data input. Whereas a linear model
can discriminate the extreme values from the main tendency, the SRE considers them as
important as any other data point leading to changes in predictions.
The more (non-colinear) variables, the more restrictive the model will be.
Predictions are returned as binary (0
or 1
) values, a site being either
potentially suitable for all the variables, or out of bounds for at least one variable and
therefore considered unsuitable.
quant
determines the threshold from which the data will be taken into account for
calibration. The default value of 0.05
induces that the 5%
most extreme values
will be avoided for each variable on each side of its distribution along the gradient, meaning
that a total of 10%
of the data will not be considered.
Value
A vector
or a SpatRaster
object, containing binary
(0
or 1
) values.
Author(s)
Wilfried Thuiller, Bruno Lafourcade, Damien Georges
References
Nix, H.A., 1986. A biogeographic analysis of Australian elapid snakes. In: Atlas of Elapid Snakes of Australia. (Ed.) R. Longmore, pp. 4-15. Australian Flora and Fauna Series Number 7. Australian Government Publishing Service: Canberra.
Busby, Jeremy. BIOCLIM - a bioclimate analysis and prediction system. Plant protection quarterly 6 (1991): 8-9.
See Also
bm_PseudoAbsences
, BIOMOD_FormatingData
,
bm_ModelingOptions
, bm_Tuning
,
bm_RunModelsLoop
, BIOMOD_Modeling
,
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_Tuning()
,
bm_VariablesImportance()
Examples
library(terra)
## Load real data
data(DataSpecies)
myResp.r <- as.numeric(DataSpecies[, 'GuloGulo'])
data(bioclim_current)
myExpl.r <- rast(bioclim_current)
myRespXY <- DataSpecies[which(myResp.r == 1), c('X_WGS84', 'Y_WGS84')]
myResp.v <- classify(subset(myExpl.r, 1),
matrix(c(-Inf, Inf, 0), ncol = 3, byrow = TRUE))
myResp.v[cellFromXY(myResp.v, myRespXY)] <- 1
## Compute SRE for several quantile values
sre.100 <- bm_SRE(resp.var = myResp.v,
expl.var = myExpl.r,
new.env = myExpl.r,
quant = 0)
sre.095 <- bm_SRE(resp.var = myResp.v,
expl.var = myExpl.r,
new.env = myExpl.r,
quant = 0.025)
sre.090 <- bm_SRE(resp.var = myResp.v,
expl.var = myExpl.r,
new.env = myExpl.r,
quant = 0.05)
## Visualize results
res <- c(myResp.v, sre.100, sre.095, sre.090)
names(res) <- c("Original distribution", "Full data calibration"
, "Over 95 percent", "Over 90 percent")
plot(res)