entropy {bio3d} | R Documentation |
Shannon Entropy Score
Description
Calculate the sequence entropy score for every position in an alignment.
Usage
entropy(alignment)
Arguments
alignment |
sequence alignment returned from
|
Details
Shannon's information theoretic entropy (Shannon, 1948) is an often-used measure of residue diversity and hence residue conservation.
Value
Returns a list with five components:
H |
standard entropy score for a 22-letter alphabet. |
H.10 |
entropy score for a 10-letter alphabet (see below). |
H.norm |
normalized entropy score (for 22-letter alphabet), so that conserved (low entropy) columns (or positions) score 1, and diverse (high entropy) columns score 0. |
H.10.norm |
normalized entropy score (for 10-letter alphabet), so that conserved (low entropy) columns score 1 and diverse (high entropy) columns score 0. |
freq |
residue frequency matrix containing percent occurrence values for each residue type. |
Note
In addition to the standard entropy score (based on a 22-letter
alphabet of the 20 standard amino-acids, plus a gap character ‘-’
and a mask character ‘X’), an entropy score, H.10
, based on
a 10-letter alphabet is also returned.
For H.10
, residues from the 22-letter alphabet are classified
into one of 10 types, loosely following the convention of Mirny and
Shakhnovich (1999):
Hydrophobic/Aliphatic [V,I,L,M],
Aromatic [F,W,Y],
Ser/Thr [S,T],
Polar [N,Q],
Positive [H,K,R],
Negative [D,E],
Tiny [A,G],
Proline [P],
Cysteine [C], and
Gaps [-,X].
The residue code ‘X’ is useful for handling non-standard aminoacids.
Author(s)
Barry Grant
References
Grant, B.J. et al. (2006) Bioinformatics 22, 2695–2696.
Shannon (1948) The System Technical J. 27, 379–422.
Mirny and Shakhnovich (1999) J. Mol. Biol. 291, 177–196.
See Also
Examples
# Read HIV protease alignment
aln <- read.fasta(system.file("examples/hivp_xray.fa",package="bio3d"))
# Entropy and consensus
h <- entropy(aln)
con <- consensus(aln)
names(h$H)=con$seq
print(h$H)
# Entropy for sub-alignment (positions 1 to 20)
h.sub <- entropy(aln$ali[,1:20])
# Plot entropy and residue frequencies (excluding positions >=60 percent gaps)
H <- h$H.norm
H[ apply(h$freq[21:22,],2,sum)>=0.6 ] = 0
col <- mono.colors(32)
aa <- rev(rownames(h$freq))
oldpar <- par(no.readonly=TRUE)
layout(matrix(c(1,2),2,1,byrow = TRUE), widths = 7,
heights = c(2, 8), respect = FALSE)
# Plot 1: entropy
par(mar = c(0, 4, 2, 2))
barplot(H, border="white", ylab = "Entropy",
space=0, xlim=c(3.7, 97.3),yaxt="n" )
axis(side=2, at=c(0.2,0.4, 0.6, 0.8))
axis(side=3, at=(seq(0,length(con$seq),by=5)-0.5),
labels=seq(0,length(con$seq),by=5))
box()
# Plot2: residue frequencies
par(mar = c(5, 4, 0, 2))
image(x=1:ncol(con$freq),
y=1:nrow(con$freq),
z=as.matrix(rev(as.data.frame(t(con$freq)))),
col=col, yaxt="n", xaxt="n",
xlab="Alignment Position", ylab="Residue Type")
axis(side=1, at=seq(0,length(con$seq),by=5))
axis(side=2, at=c(1:22), labels=aa)
axis(side=3, at=c(1:length(con$seq)), labels =con$seq)
axis(side=4, at=c(1:22), labels=aa)
grid(length(con$seq), length(aa))
box()
for(i in 1:length(con$seq)) {
text(i, which(aa==con$seq[i]),con$seq[i],col="white")
}
abline(h=c(3.5, 4.5, 5.5, 3.5, 7.5, 9.5,
12.5, 14.5, 16.5, 19.5), col="gray")
par(oldpar)