print_outputs {binspp} | R Documentation |
Text output describing the posterior distributions
Description
The summaries of the posterior distributions in the text form are provided.
Usage
print_outputs(Output)
Arguments
Output |
list, output of the main function |
Details
The parameter estimates (sample medians
from the empirical posterior distributions) and the 2.5%
and 97.5% quantiles from the empirical posterior
distributions are printed.
Additionally, during the run of the MCMC chain the significance
of the covariates in the list z_beta with respect to the
current population of parent points is repeatedly tested.
This function prints the medians of the series of p-values
obtained in this way, together with the corresponding
2.5% and 97.5% sample quantiles of the p-values for each covariate.
Value
Text output summarizing the posterior distributions.
Examples
library(spatstat)
# Prepare the dataset:
X = trees_N4
x_left = x_left_N4
x_right = x_right_N4
y_bottom = y_bottom_N4
y_top = y_top_N4
z_beta = list(refor = cov_refor, slope = cov_slope)
z_alpha = list(tmi = cov_tmi, tdensity = cov_tdensity)
z_omega = list(slope = cov_slope, reserv = cov_reserv)
# Determine the union of rectangles:
W = owin(c(x_left[1], x_right[1]), c(y_bottom[1], y_top[1]))
if (length(x_left) >= 2) {
for (i in 2:length(x_left)) {
W2 = owin(c(x_left[i], x_right[i]), c(y_bottom[i], y_top[i]))
W = union.owin(W, W2)
}
}
# Dilated observation window:
W_dil = dilation.owin(W, 100)
# Default parameters for prior distributions:
control = list(NStep = 100, BurnIn = 20, SamplingFreq = 5)
# MCMC estimation:
Output = estintp(X, control, x_left, x_right, y_bottom, y_top, W_dil,
z_beta, z_alpha, z_omega, verbose = FALSE)
# Text output
print_outputs(Output)
[Package binspp version 0.1.26 Index]