gini {binsmooth} | R Documentation |
Estimate the Gini coefficient
Description
Estimates the Gini coefficient from a smoothed distribution.
Usage
gini(binFit)
Arguments
binFit |
A list as returned by |
Details
For distributions of non-negative support, the Gini coefficient can be computed from a cumulative distribution function F(x)
by the integral
G = 1 - \frac{1}{\mu}\int_0^\infty (1-F(x))^2 \, dx
where \mu
is the mean of the distribution.
Value
Returns the Gini coefficient G
.
Author(s)
David J. Hunter and McKalie Drown
References
Paul T. von Hippel, David J. Hunter, McKalie Drown. Better Estimates from Binned Income Data: Interpolated CDFs and Mean-Matching, Sociological Science, November 15, 2017. https://www.sociologicalscience.com/articles-v4-26-641/
Examples
# 2005 ACS data from Cook County, Illinois
binedges <- c(10000,15000,20000,25000,30000,35000,40000,45000,
50000,60000,75000,100000,125000,150000,200000,NA)
bincounts <- c(157532,97369,102673,100888,90835,94191,87688,90481,
79816,153581,195430,240948,155139,94527,92166,103217)
stepfit <- stepbins(binedges, bincounts, 76091)
splinefit <- splinebins(binedges, bincounts, 76091)
gini(stepfit)
gini(splinefit) # More accurate