| gini {binsmooth} | R Documentation |
Estimate the Gini coefficient
Description
Estimates the Gini coefficient from a smoothed distribution.
Usage
gini(binFit)
Arguments
binFit |
A list as returned by |
Details
For distributions of non-negative support, the Gini coefficient can be computed from a cumulative distribution function F(x) by the integral
G = 1 - \frac{1}{\mu}\int_0^\infty (1-F(x))^2 \, dx
where \mu is the mean of the distribution.
Value
Returns the Gini coefficient G.
Author(s)
David J. Hunter and McKalie Drown
References
Paul T. von Hippel, David J. Hunter, McKalie Drown. Better Estimates from Binned Income Data: Interpolated CDFs and Mean-Matching, Sociological Science, November 15, 2017. https://www.sociologicalscience.com/articles-v4-26-641/
Examples
# 2005 ACS data from Cook County, Illinois
binedges <- c(10000,15000,20000,25000,30000,35000,40000,45000,
50000,60000,75000,100000,125000,150000,200000,NA)
bincounts <- c(157532,97369,102673,100888,90835,94191,87688,90481,
79816,153581,195430,240948,155139,94527,92166,103217)
stepfit <- stepbins(binedges, bincounts, 76091)
splinefit <- splinebins(binedges, bincounts, 76091)
gini(stepfit)
gini(splinefit) # More accurate