| afgen {binhf} | R Documentation | 
NN and Anscombe samples
Description
Samples binomial Fisz and Anscombe transformed random variables on a grid of binomial probabilities.
Usage
afgen(xgrid = seq(0, 1, length = 21), ygrid = seq(0, 1, length = 21), samples = 1000, 
binsize = 32)
Arguments
| xgrid | vector of x co-ordinate probabilities. | 
| ygrid | vector of x co-ordinate probabilities. | 
| samples | the number of samples to draw from each random variable. | 
| binsize | the binomial size of the binomial random variables. | 
Details
The function produces sampled values from the random variable:
 
\zeta(X_1,X_2)=\frac{X_1-X_2}{ \sqrt{ (X_1+X_2)(2*binsize-X_1-X_2)/ 2*binsize }} 
,
 
where X_i are Bin(binsize,p_i) random variables, for all combinations of values of p_1 in xgrid and p_2 in ygrid.  
For Anscombe's transformation, 
A=sin^{-1}\sqrt{(x+3/8)/(binsize+3/4)}, the values correspond to the random variable with the larger binomial probability.
Value
| a | an array of dimensions  | 
| b | an array of dimensions  | 
Author(s)
Matt Nunes (m.nunes@ucl.ac.uk)
References
Anscombe, F.J. (1948) The transformation of poisson, binomial and negative binomial Data, Biometrika,35, 246–254.
Nunes, M. and Nason, G.P. (2009) A multiscale variance stabilization for binomial sequence proportion estimation. Statistica Sinica, 19
(1491–1510).
See Also
Examples
##
varvalues<-afgen(xgrid=seq(0,1,length=21),ygrid=seq(0,1,length=21),samples=1000,binsize=32)
##creates 1000 samples of the two random variables zeta_B and A for each point 
##(x,y) for x and y regularly-spaced probability vectors of length 21.
##