mm {binaryMM} | R Documentation |
Fit Marginalized Transition and/or Latent Variable Models
Description
Fit a marginalzed transition and/or latent variable models (mTLV) as described by Schildcrout and Heagerty 2007.
Usage
mm(
mean.formula,
lv.formula = NULL,
t.formula = NULL,
id,
data,
inits = NULL,
weight = NULL,
offset = NULL,
q = 30,
step.max = 1,
step.tol = 1e-06,
hess.eps = 1e-07,
adapt.quad = FALSE,
verbose = FALSE,
iter.lim = 100,
return_args = FALSE
)
Arguments
mean.formula |
Mean model formula in which a binary variable is regressed on covariates |
lv.formula |
Latent variable model formula (right hand side only) |
t.formula |
Transition model formula (right hand side only) |
id |
a vector of cluster identifiers (it should be the same length of nrow(data)). |
data |
a required data frame |
inits |
an optional list of length 3 containing initial values for marginal mean parameters and all dependence parameters. The format of the list should be: (1) estimates of the mean parameters, (2) estimates of the transition parameters (or NULL if only fitting a mLV model) and (3) estimates of the latent variable parameters (or NULL if only fitting a mT model). If NULL, initial values will be automatically generated. |
weight |
a vector of sampling weights - if using weighted estimating equations. The vector should be the same length of nrow(data). |
offset |
an optional offset |
q |
a scalar to denote the number of quadrature points used to compute the Gauss-Hermite quadrature rule |
step.max |
a scalar |
step.tol |
a scalar |
hess.eps |
a scalar |
adapt.quad |
an indicator if adaptive quadrature is to be used. NOT CURRENTLY IMPLEMENTED. |
verbose |
an indicator if model output should be printed to the screen during maximization (or minimization of negative log-likelihood) |
iter.lim |
a scalar to denote the maximum iteration limit. Default value is 100. |
return_args |
indicator to denote if attributes of the output should be printed. |
Value
This function returns marginal mean (beta) and dependence parameters (alpha) along with the associated model and empirical covariance matricies
Examples
data(datrand)
fit <- mm(Y~time*binary, t.formula=~1, data=datrand, id=id, step.max=4, verbose=FALSE)