GenBinaryY {binaryMM} | R Documentation |
Generate binary response data from a Marginalized Transition and Latent Variable Model
Description
Generate binary response data from a Marginalized Transition and Latent Variable Model
Usage
GenBinaryY(
mean.formula,
lv.formula = NULL,
t.formula = NULL,
beta = NULL,
sigma = NULL,
gamma = NULL,
id,
data,
q = 10
)
Arguments
mean.formula |
Right hand side of mean model formula |
lv.formula |
Latent variable model formula (right hand side only) |
t.formula |
Transition model formula (right hand side only) |
beta |
a vector of values for mean.formula |
sigma |
a vector of values for the latent variable portion of the association model (else NULL) |
gamma |
a vector of values for the transition porition of the association model (else NULL) |
id |
a vector of cluster identifiers (it should be the same length nrow(data)) |
data |
a required data frame |
q |
a scalar to denote the number of quadrature points used for GH numerical integration |
Value
The function returns a binary response vector.
Examples
set.seed(1)
N = 100
nclust = sample( seq(10,10), N, replace=TRUE)
id = rep(seq(N), nclust)
Xe = rep(rbinom(N,size=1,prob=.5), nclust) # binary exposure
time = unlist( sapply( as.list(nclust), function(ZZ) seq(ZZ)-1 ) )
data = data.frame(id, time, Xe)
data = data[order(data$id, data$time),]
newdata = GenBinaryY(mean.formula=~time*Xe, lv.formula=~1, t.formula=~1,
beta=c(-2.5, 0.25, 0.25, 0.1), sigma=1, gamma=1, id=id, data=data, q=20)
[Package binaryMM version 0.1.1 Index]