| predict.binaryGP {binaryGP} | R Documentation | 
Predictions of Binary Gaussian Process
Description
The function computes the predicted response and its variance as well as its confidence interval.
Usage
## S3 method for class 'binaryGP'
predict(object, xnew, conf.level = 0.95,
  sim.number = 101, ...)
Arguments
| object | a class binaryGP object estimated by  | 
| xnew | a testing matrix with dimension  | 
| conf.level | a value from 0 to 1 specifying the level of confidence interval. The default is 0.95. | 
| sim.number | a positive integer specifying the simulation number for Monte-Carlo method. The default is 101. | 
| ... | for compatibility with generic method  | 
Value
| mean | a matrix with dimension  | 
| var | a matrix with dimension  | 
| upper.bound | a matrix with dimension  | 
| lower.bound | a matrix with dimension  | 
| y_pred | a matrix with dimension  | 
Author(s)
Chih-Li Sung <iamdfchile@gmail.com>
See Also
binaryGP_fit for estimation of the binary Gaussian process.
Examples
library(binaryGP)
#####      Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences      #####
#####   Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(X, TT)
{
  x1 <- X[,1]
  x2 <- X[,2]
  eta_1 <- cos(x1 + x2) * exp(x1*x2)
  p_1 <- exp(eta_1)/(1+exp(eta_1))
  y_1 <- rep(NA, length(p_1))
  for(i in 1:length(p_1)) y_1[i] <- rbinom(1,1,p_1[i])
  Y <- y_1
  P <- p_1
  if(TT > 1){
    for(tt in 2:TT){
      eta_2 <- 0.3 * y_1 + eta_1
      p_2 <- exp(eta_2)/(1+exp(eta_2))
      y_2 <- rep(NA, length(p_2))
      for(i in 1:length(p_2)) y_2[i] <- rbinom(1,1,p_2[i])
      Y <- cbind(Y, y_2)
      P <- cbind(P, p_2)
      y_1 <- y_2
    }
  }
  return(list(Y = Y, P = P))
}
set.seed(1)
n <- 30
n.test <- 10
d <- 2
X <- matrix(runif(d * n), ncol = d)
X.test <- matrix(runif(d * n.test), ncol = d)
##### without time-series #####
Y <- test_function(X, 1)$Y  ## Y is a vector
test.out <- test_function(X.test, 1)
Y.test <- test.out$Y
P.true <- test.out$P
# fitting
binaryGP.model <- binaryGP_fit(X = X, Y = Y)
# prediction
binaryGP.prediction <- predict(binaryGP.model, xnew = X.test)
print(binaryGP.prediction$mean)
print(binaryGP.prediction$var)
print(binaryGP.prediction$upper.bound)
print(binaryGP.prediction$lower.bound)
##### with time-series #####
Y <- test_function(X, 10)$Y  ## Y is a matrix with 10 columns
test.out <- test_function(X.test, 10)
Y.test <- test.out$Y
P.true <- test.out$P
# fitting
binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)
# prediction
binaryGP.prediction <- predict(binaryGP.model, xnew = X.test)
print(binaryGP.prediction$mean)
print(binaryGP.prediction$var)
print(binaryGP.prediction$upper.bound)
print(binaryGP.prediction$lower.bound)