binaryGP_fit {binaryGP} | R Documentation |
Binary Gaussian Process (with/without time-series)
Description
The function fits Gaussian process models with binary response. The models can also include time-series term if a time-series binary response is observed. The estimation methods are based on PQL/PQPL and REML (for mean function and correlation parameter, respectively).
Usage
binaryGP_fit(X, Y, R = 0, L = 0, corr = list(type = "exponential", power =
2), nugget = 1e-10, constantMean = FALSE, orthogonalGP = FALSE,
converge.tol = 1e-10, maxit = 15, maxit.PQPL = 20, maxit.REML = 100,
xtol_rel = 1e-10, standardize = FALSE, verbose = TRUE)
Arguments
X |
a design matrix with dimension |
Y |
a response matrix with dimension |
R |
a positive integer specifying the order of autoregression only if time-series is included. The default is 1. |
L |
a positive integer specifying the order of interaction between |
corr |
a list of parameters for the specifing the correlation to be used. Either exponential correlation function or Matern correlation function can be used. See |
nugget |
a positive value to use for the nugget. If |
constantMean |
logical. |
orthogonalGP |
logical. |
converge.tol |
convergence tolerance. It converges when relative difference with respect to |
maxit |
a positive integer specifying the maximum number of iterations for estimation to be performed before the estimates are convergent. The default is 15. |
maxit.PQPL |
a positive integer specifying the maximum number of iterations for PQL/PQPL estimation to be performed before the estimates are convergent. The default is 20. |
maxit.REML |
a positive integer specifying the maximum number of iterations in |
xtol_rel |
a postive value specifying the convergence tolerance for |
standardize |
logical. If |
verbose |
logical. If |
Details
Consider the model
logit(p_t(x))=\eta_t(x)=\sum^R_{r=1}\varphi_ry_{t-r}(\mathbf{x})+\alpha_0+\mathbf{x}'\boldsymbol{\alpha}+\sum^L_{l=1}\boldsymbol{\gamma}_l\textbf{x}y_{t-l}(\mathbf{x})+Z_t(\mathbf{x}),
where p_t(x)=Pr(y_t(x)=1)
and Z_t(\cdot)
is a Gaussian process with zero mean, variance \sigma^2
, and correlation function R_{\boldsymbol{\theta}}(\cdot,\cdot)
with unknown correlation parameters \boldsymbol{\theta}
. The power exponential correlation function is used and defined by
R_{\boldsymbol{\theta}}(\mathbf{x}_i,\mathbf{x}_j)=\exp\{-\sum^{d}_{l=1}\frac{(x_{il}-x_{jl})^p}{\theta_l} \},
where p
is given by power
. The parameters in the mean functions including \varphi_r,\alpha_0,\boldsymbol{\alpha},\boldsymbol{\gamma}_l
are estimated by PQL/PQPL, depending on whether the mean function has the time-series structure. The parameters in the Gaussian process including \boldsymbol{\theta}
and \sigma^2
are estimated by REML. If orthogonalGP
is TRUE
, then orthogonal covariance function (Plumlee and Joseph, 2016) is employed. More details can be seen in Sung et al. (unpublished).
Value
alpha_hat |
a vector of coefficient estimates for the linear relationship with X. |
varphi_hat |
a vector of autoregression coefficient estimates. |
gamma_hat |
a vector of the interaction effect estimates. |
theta_hat |
a vector of correlation parameters. |
sigma_hat |
a value of sigma estimate (standard deviation). |
nugget_hat |
if |
orthogonalGP |
|
X |
data |
Y |
data |
R |
order of autoregression. |
L |
order of interaction between X and previous Y. |
corr |
a list of parameters for the specifing the correlation to be used. |
Model.mat |
model matrix. |
eta_hat |
eta_hat. |
standardize |
|
mean.x |
mean of each column of |
scale.x |
|
Author(s)
Chih-Li Sung <iamdfchile@gmail.com>
See Also
predict.binaryGP
for prediction of the binary Gaussian process, print.binaryGP
for the list of estimation results, and summary.binaryGP
for summary of significance results.
Examples
library(binaryGP)
##### Testing function: cos(x1 + x2) * exp(x1*x2) with TT sequences #####
##### Thanks to Sonja Surjanovic and Derek Bingham, Simon Fraser University #####
test_function <- function(X, TT)
{
x1 <- X[,1]
x2 <- X[,2]
eta_1 <- cos(x1 + x2) * exp(x1*x2)
p_1 <- exp(eta_1)/(1+exp(eta_1))
y_1 <- rep(NA, length(p_1))
for(i in 1:length(p_1)) y_1[i] <- rbinom(1,1,p_1[i])
Y <- y_1
P <- p_1
if(TT > 1){
for(tt in 2:TT){
eta_2 <- 0.3 * y_1 + eta_1
p_2 <- exp(eta_2)/(1+exp(eta_2))
y_2 <- rep(NA, length(p_2))
for(i in 1:length(p_2)) y_2[i] <- rbinom(1,1,p_2[i])
Y <- cbind(Y, y_2)
P <- cbind(P, p_2)
y_1 <- y_2
}
}
return(list(Y = Y, P = P))
}
set.seed(1)
n <- 30
n.test <- 10
d <- 2
X <- matrix(runif(d * n), ncol = d)
##### without time-series #####
Y <- test_function(X, 1)$Y ## Y is a vector
binaryGP.model <- binaryGP_fit(X = X, Y = Y)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results
##### with time-series, lag 1 #####
Y <- test_function(X, 10)$Y ## Y is a matrix with 10 columns
binaryGP.model <- binaryGP_fit(X = X, Y = Y, R = 1)
print(binaryGP.model) # print estimation results
summary(binaryGP.model) # significance results