PoissonBlocICL {bikm1} | R Documentation |
PoissonBlocICL function for the computation of the ICL criterion in the Poisson LBM
Description
Produce a value of the ICL criterion for co-clustering partitions
Usage
PoissonBlocICL(a,alpha,beta,x,v1,w1,normalization)
Arguments
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
alpha |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1. |
beta |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01. |
x |
contingency matrix of observations. |
v1 |
a numeric vector specifying the class of rows. |
w1 |
a numeric vector specifying the class of columns. |
normalization |
logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE. |
Value
a value of the ICL criterion
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=(1/h)*matrix(1,h,1)
theta$tau_l=(1/l)*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
icl=PoissonBlocICL(4,1,0.01,data$x,res@model_max$v,res@model_max$w, normalization=FALSE)
[Package bikm1 version 1.1.0 Index]