PoissonBlocBIC {bikm1} | R Documentation |
PoissonBlocBIC function for the computation of the BIC criterion in the Poisson LBM
Description
Produce a value of the BIC criterion for co-clustering partitions
Usage
PoissonBlocBIC(a,alpha,beta,v1,w1,x,res,normalization)
Arguments
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
alpha |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1. |
beta |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01. |
v1 |
a numeric vector of row partitions |
w1 |
a numeric vector of column partitions |
x |
contingency matrix of observations. |
res |
a BIKM1_LBM_Poisson object
|
normalization |
logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE. |
Value
a value of the BIC criterion
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h*matrix(1,h,1)
theta$tau_l=1/l*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
bic=PoissonBlocBIC(v1=res@model_max$v,w1=res@model_max$w,x=data$x,res=res,normalization=TRUE)
[Package bikm1 version 1.1.0 Index]