snp_ldsc {bigsnpr} | R Documentation |
LD score regression
Description
LD score regression
Usage
snp_ldsc(
ld_score,
ld_size,
chi2,
sample_size,
blocks = 200,
intercept = NULL,
chi2_thr1 = 30,
chi2_thr2 = Inf,
ncores = 1
)
snp_ldsc2(
corr,
df_beta,
blocks = NULL,
intercept = 1,
ncores = 1,
ind.beta = cols_along(corr),
...
)
Arguments
ld_score |
Vector of LD scores. |
ld_size |
Number of variants used to compute |
chi2 |
Vector of chi-squared statistics. |
sample_size |
Sample size of GWAS corresponding to chi-squared statistics. Possibly a vector, or just a single value. |
blocks |
Either a single number specifying the number of blocks,
or a vector of integers specifying the block number of each |
intercept |
You can constrain the intercept to some value (e.g. 1).
Default is |
chi2_thr1 |
Threshold on |
chi2_thr2 |
Threshold on |
ncores |
Number of cores used. Default doesn't use parallelism. You may use nb_cores. |
corr |
Sparse correlation matrix. Can also be an SFBM. |
df_beta |
A data frame with 3 columns:
|
ind.beta |
Indices in |
... |
Arguments passed on to |
Value
Vector of 4 values (or only the first 2 if blocks = NULL
):
-
[["int"]]
: LDSC regression intercept, -
[["int_se"]]
: SE of this intercept, -
[["h2"]]
: LDSC regression estimate of (SNP) heritability (also see coef_to_liab), -
[["h2_se"]]
: SE of this heritability estimate.
Examples
bigsnp <- snp_attachExtdata()
G <- bigsnp$genotypes
y <- bigsnp$fam$affection - 1
corr <- snp_cor(G, ind.col = 1:1000)
gwas <- big_univLogReg(G, y, ind.col = 1:1000)
df_beta <- data.frame(beta = gwas$estim, beta_se = gwas$std.err,
n_eff = 4 / (1 / sum(y == 0) + 1 / sum(y == 1)))
snp_ldsc2(corr, df_beta)
snp_ldsc2(corr, df_beta, blocks = 20, intercept = NULL)