kmdepth.fd {bigdatadist} | R Documentation |
Kernel Mahalanobis Depth for Functional Data
Description
This function allows you to compute the Generalized Kernel Mahalanobis depth measure for a sample of functional data as stated in Hernandez et al (2018, submitted).
Usage
kmdepth.fd(fdframe, gamma = 1, kerfunc = "rbf" ,
kerpar = list(sigma = 1, bias = 0, degree = 2) ,
d = 2 , robust=TRUE , h=0.1 , nsamp=250)
Arguments
fdframe |
an |
gamma |
regularization parameter. |
kerfunc |
kernel function to be used. |
kerpar |
a list of kernel parameters where sigma is the scale with both kernels. |
d |
truncation parameter in the Reproducing Kernel Hilbert Space representation. |
robust |
TRUE if the covariance matrix is estimated through Robust Maximum Likelihood method. |
h |
numeric parameter controlling the a-prioir precentage of outliers in the sample (value between 0 and 1, by def = 0.1). |
nsamp |
number of subsets used for initial estimates (by def = 250). |
Value
depth |
the kernel-mahalanobis depth measure for the curves in the sample. |
Author(s)
Hernandez and Martos
References
Hernandez N. et al (2018, submitted). Generalized Mahalanobis depth functions.
Examples
data(Ausmale); t <- Ausmale[[1]]
t = as.numeric(( t - min(t) ) / length(t))
raw.data = fdframe(t=t, Y=Ausmale[[2]])
kmd.fit.fd = kmdepth.fd(raw.data, gamma = 0.0001, kerfunc = "rbf" ,
kerpar = list(sigma = 10) , d = 2 , robust=TRUE)
kmd.fit.fd$depth
rbPal <- colorRampPalette(c('red','black'))
color = rbPal(5)[as.numeric(cut(kmd.fit.fd$depth,breaks = 5))]
plot(rkhs(raw.data,gamma=0.0001,kerfunc="rbf",kerpar=list(sigma = 10)),
col = color, xlab='time',ylab='')