entropy.fd {bigdatadist} | R Documentation |
Functional Entropy Measures
Description
This function allows you to compute the family of alpha-Entropy for functional data as stated in Martos et al (2018).
Usage
entropy.fd(fdframe, gamma = 1, kerfunc="rbf",
kerpar = list(sigma = 1, bias=0,degree=2),
alpha=2,d=2,resol,k.neighbor)
Arguments
fdframe |
functional data frame |
gamma |
regularization parameter. |
kerfunc |
kernel function ( |
kerpar |
a list of kernel parameters where sigma is the scale with both kernels. |
alpha |
Entropy parameter. |
d |
Dimension truncation in the Reproducing Kernel Hilbert Space representation. |
resol |
number of level sets used to compute the functional entropy. |
k.neighbor |
number of points to estimate the support of the distribution. |
Details
This function estimates the entropy of a stochastic process. To this aim, the raw functional data is projected onto a Reproducing Kernel Hilbert Space, and the entropy is estimated using the coefficient of these functions.
Value
local.entropy |
local entropy relative to each curve in the sample. |
entropy |
estimated entropy of the the set of functions. |
Author(s)
Hernandez and Martos
References
Martos, G. et al (2018). Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection. Entropy 20(1), 33 (2018).
Examples
data(Ausmale); t <- Ausmale[[1]]
t <- as.numeric(( t - min(t) ) / length(t))
raw.data <- fdframe(t=t, Y=Ausmale[[2]])
entropy.fd(raw.data,gamma=0.0001,kerfunc="rbf",kerpar=c(10),
alpha=2, k.neighbor=15)