| entropy.fd {bigdatadist} | R Documentation | 
Functional Entropy Measures
Description
This function allows you to compute the family of alpha-Entropy for functional data as stated in Martos et al (2018).
Usage
entropy.fd(fdframe, gamma = 1, kerfunc="rbf",
       kerpar = list(sigma = 1, bias=0,degree=2), 
       alpha=2,d=2,resol,k.neighbor) 
Arguments
fdframe | 
 functional data frame   | 
gamma | 
 regularization parameter.  | 
kerfunc | 
 kernel function (  | 
kerpar | 
 a list of kernel parameters where sigma is the scale with both kernels.  | 
alpha | 
 Entropy parameter.  | 
d | 
 Dimension truncation in the Reproducing Kernel Hilbert Space representation.  | 
resol | 
 number of level sets used to compute the functional entropy.  | 
k.neighbor | 
 number of points to estimate the support of the distribution.  | 
Details
This function estimates the entropy of a stochastic process. To this aim, the raw functional data is projected onto a Reproducing Kernel Hilbert Space, and the entropy is estimated using the coefficient of these functions.
Value
local.entropy | 
 local entropy relative to each curve in the sample.  | 
entropy | 
 estimated entropy of the the set of functions.  | 
Author(s)
Hernandez and Martos
References
Martos, G. et al (2018). Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection. Entropy 20(1), 33 (2018).
Examples
data(Ausmale); t <- Ausmale[[1]]
t <- as.numeric(( t - min(t) ) / length(t))
raw.data <- fdframe(t=t, Y=Ausmale[[2]])
entropy.fd(raw.data,gamma=0.0001,kerfunc="rbf",kerpar=c(10), 
                        alpha=2, k.neighbor=15)